Inhaltsverzeichnis

1.	Einleitung	3
2.	Konfiguration 2.1. Karte 2.2. Kanal 2.2.1. Eingangsbereich 2.2.2. Kanaltyp	3 3 6 7 8
3.	ADC - Werte anzeigen	13
4.	Programmiertips	14
5.	Technische Daten 5.1. Steckerbelegung 5.2. Anschlussbeispiel 5.3. Spezifikationen	

1. Einleitung

Die INFO-ADC Karte kann Spannungen bis 10V mit einer Auflösung von wahlweise 14, 15 oder 16 Bit messen. Die Verstärkung kann pro Kanal x1,x10,x100 und x500 und bipolar (+-10V) oder unipolar (0..10V) softwaremässig eingestellt werden. Die Karte wird über einen Lichtwellenleiter(TOSLINK) an den INFO-Master im PC oder im INDEL-Rechner angeschlossen und kann bis zu 30m mit APF(all plastic fiber) und 500m mit PCF(plastic cladding silica fiber) abgesetzt werden. Dadurch minimiert sich der Verdrahtungsaufwand und auch die Störeinflüsse. Bis zu 14 Messsignale (Spannung, Strom, Temperatur-Fühler) werden direkt an der Karte angeschlossen. Vier hochpräzise Referenz-Spannungen für den automatischen Nullpunkt und Fullscale-Abgleich sind auf der Karte fest eingebaut. Die integrierende Messzeit der Karte ist konfigurierbar, so dass Störungen (z.B. vom Netz) ausgefiltert werden können. Um Erdströme zu vermeiden ist die Karte gegenüber der Speisung und dem INFO-Link-Feldbus galvanisch getrennt. Der INFO-Master misst automatisch alle gewählten Kanäle mit der gewünschten Verstärkung, korrigiert Offset und Fullscale und übergibt die Messwerte unabhängig von der Bereichswahl in Fest- oder Fliesskommaformat im Dualport-Ram. Temperaturen werden zusätzlich mit einem beliebig wählbaren Kanal kompensiert, linearisiert und direkt in Grad Celsius übergeben.

2. Konfiguration

2.1. Karte

Starten Sie CONFIG.EXE und wählen Sie den Menüpunkt ANALOG. Es erscheint ein weiteres Menü mit den Optionen NUMBER OF CARDS und CONFIGURATION. Wählen Sie die erste Option, um die Anzahl Analog-Karten (PT100, ADC, DAC usw.), die an Ihrem Master angeschlossen sind, zu definieren. Der maximale Wert hängt davon ab, wieviel Platz Sie für die Analog-Uebergabebereiche unter dem Eintrag [Config] in der INI Datei reserviert haben (siehe INFO-PCMaster Dokumentation 9. Erweiterte Konfiguration). Anschliessend öffnen Sie mit CONFIGU-RATION ein Dialogfenster, welches die genauere Spezifikation Ihrer Analog-Karten erlaubt.

Das Fenster enthält eine Liste mit der von Ihnen gewählten Anzahl Analog-Karten und die Aktionsschalter CARD TYPE, CARD CONFIG NUMBER OF CHANNELS und CHANNEL CONFIG.

Auswahl einer Analog-Karte:

Drücken Sie die TAB-Taste so oft, bis eine Karte in der Liste hervorgehoben dargestellt wird. Anschliessend können Sie mit den Pfeiltasten die gewünschte Karte auswählen. Mit der Maus müssen Sie nur die entsprechende Karte anklicken.

Betätigung eines Aktionsschalters:

Drücken Sie die TAB-Taste so oft, bis der gewünschte Aktionsschalter hervorgehoben dargestellt wird und anschliessend <enter>.

Mit der Maus müssen Sie nur den entsprechenden Aktionsschalter anklicken.

Hinweis: Noch nicht definierte Analog-Karten erscheinen 'by default' als PT100 in der Liste.

Die Vorgehensweise, eine Analog-Karte als ADC zu definieren, erklären wir am besten anhand eines Beispiels. Nehmen wir einmal an, wir haben 4 Analog-Karten an unserem Master und wollen die Karte Nr. 1 als 16 Bit - ADC definieren.

E File Digital	Analog Control Analog Cards ——	Window	09:35:10
Card 0 PT1 Card 1 PT1 Card 2 PT1 Card 3 PT1	00 Card Ty; 00 Card Cont 00 Card Cont	pe nta	
	Number of cl Channel Co	hannels onfig PT100 ADC	Card Type
		DAC PT850 F-ADC	Cancel
Alt-X Exit F2 Sa	ve F3 Load Alt-F:	NoName 3 Close F6 Next F	10 Menu

- 1. Wählen Sie die Karte 1.
- 2. Betätigen Sie den Aktionschalter CARD TYPE. Es erscheint ein Dialogfenster mit einer Liste der möglichen Analog-Karten.
- 3. Wählen Sie den Kartentyp ADC.
- 4. Betätigen Sie den Aktionsschalter OK.

Die Karte 1 ist jetzt als 16 Bit ADC definiert. Als nächstes müssen Sie die Anzahl benötigter Kanäle festlegen (max. 14).

5. Betätigen Sie den Aktionsschalter NUMBER OF CHANNELS und geben Sie z.B. 8 ein, d.h. im späteren Betrieb werden vom Master nur die Kanäle 0..7 bearbeitet.

Der Aktionsschalter CHANNEL CONFIG dient dazu, die einzelnen Kanäle zu spezifizieren. Näheres finden Sie im nächsten Kapitel.

Standardmässig beträgt die Einschwingzeit pro Kanal 20ms und die integrierende Messzeit 80ms (kompatibel zum Vorgänger 'Kupfer-PCMaster') das ergibt pro Kanal 100ms. Bei 14 Kanälen (plus Referenz-Messungen) resultiert daraus eine Zykluszeit von 1.6sec. Bei der INFO-ADC-Karte hat man nun aber die Möglichkeit, diese Parameter auf die eigenen Bedürfnisse einzustellen. Betätigen Sie den Aktionsschalter CARD CONFIG.

🗉 File Digital Analog Control Window	09:38:52
Analog Cards	
Card 0 PT100 Card 1 ADC Card 2 PT100 Card 3 PT100 Number of channels Channel Config	Cycle time is 200 ms Precision : Convert () 14 Bit () 50 ms () 15 Bit () 60 ms (•) 16 Bit (•) 80 ms
	Options : [] toggle references [] force 1sec cycle
	Settling time [ms] : 20 Number of channels : 0
	Ok Cancel
Notiame Alt-X Exit F2 Saue F3 Load Alt-F3 Close F6	Next F10 Menu

Hier eine Erklärung zu den einzelnen Optionen :

Presicion:

Angabe der gewünschten Auflösung. Dies hat auch einen direkten Zusammenhang mit der Messzeit. Bei 15 Bit haben Sie ihren Messwert doppelt so schnell, bei 14 Bit in einem Viertel der Zeit.

Convert:

Bestimmen der integrierenden Messzeit. Um Netzstöreinflüsse möglichst klein zu halten, sollten Sie hier bei 50Hz-Netzumgebung und 16 Bit Auflösung entweder 80ms oder 60ms wählen.

Toggle references:

Normalerweise werden bei jedem Messzyklus auch Minimum- und Maximum-Referenz gemessen. Wählen Sie diese Option, um pro Zyklus nur noch eine Referenz zu messen.

Force 1sec cycle:

Wählen Sie diese Option um einen exakten 1sec Messzyklus pro Kanal zu erzwingen.

Settling time [ms]:

Hier können Sie die gewünschte Kanaleinschwingzeit in ms wählen.

Number of channels:

Anzahl Kanäle.

Hinweis: In der obersten Zeile wird immer die aktuelle Messzykluszeit pro Kanal angegeben.

Beispiel: Sie wollen alle 14 Kanäle mit 16 Bit Genauigkeit in einem 1sec-Zyklus messen.

- 1. Wählen Sie Precision = 16 Bit
- 2. Wählen Sie Convert = 60ms
- 3. Selektieren Sie 'Toggle references'.
- 4. Selektieren Sie 'Force 1sec cycle'.
- 6. Setzen Sie 'Settling time' auf 6ms
- 7. Setzen Sie 'Anzahl Kanäle auf 14.

2.2. Kanal

Die grosse Stärke dieser Karte liegt in der Tatsache, dass jeder Kanal einzeln softwaremässig den eigenen Bedürfnissen angepasst werden kann. Betätigen Sie den Aktionsschalter CHANNEL CONFIG. Folgendes Bild erscheint auf Ihrem Display :

= File	Digital Analo	q Control Window	1 17 dela del 1861 del 1861 del 1861 del 1861 del 1861 del 1861 del 1865 del 1865 del 1865 del 1865 del 1865 del	12:49:54
	Channel 0	910.00 U Š	Input ange	
	Channel 1	010.00 V 0		
	Channel 2	010.00 V	Channel upe	
	Channel 3	010.00 U		
	Channel 4	010.00 V		
	Channel 5	010.00 V	Parameter 1	
	Channel 6	010.00 V		
	Channel 7	010.00 V	Parameter 2	
	Channel 8	010.00 V		
	Channel 9	010.00 V	Parameter 3	
	Channel 10	010.00 V		
	Channel 11	010.00 V		
	Channel 12	010.00 V	k Cancel	
	Channel 13	010.00 V		
A14 V P. 14	1 22 Carm 22		TO Nevel 1240 March	
HIT-Y TXII	L LY DUPC 71 1	LUGU HIL-13 CIUSE	ro next rio nenu	

Das Fenster enthält eine Liste der Eingangsbereiche, der von Ihnen gewählten Anzahl Kanäle und die Aktionsschalter INPUT RANGE, CHANNEL TYPE, PARAMETER 1..3.

Hinweis: Noch nicht definierte Kanäle haben 'by default' den Eingangsbereich 0..10V und den Kanaltyp VOLT.

2.2.1. Eingangsbereich

Bereich	Auflösung bei 16 Bit
010V	0.15 mV
01V	0.015mV
00.1V	0.0015mV
00.02V	0.0003mV
+-10V	0.3mV
+-0.1V	0.03mV
+-0.1V	0.003mV
+-0.02V	0.0006mV

Folgende Eingangsbereiche sind möglich:

Wählen Sie den gewünschten Kanal aus und betätigen Sie den Aktionsschalter INPUT RANGE.

-i I Char	mel Comfiguration	of ADC-Card 1	
Channel 0	010.00 U 🤤	Input Range	
Channel 1	010.00 V 🔅		
Channel 2	010.00 V	til - Input Range	1000
Channel 3	010.00 U		
Channel 4	010.00 V	010.00 V 5	
Channel 5	010.00 V	0 1.00 V	
Channel 6	010.00 V	0., 0.10 V	
Channel 7	010.00 V	0., 0.02 U Cancel	
Channel 8	010.00 U	+- 18.88 U T	
Channel 9	010.00 U	+- 1.00 U	
Channel 10	0. 10.00 U	+- 0.10 U	
Channel 11	8. 18.89 U	+- 0.02 U	
Channel 12	A. 18.89 U		
Channel 13	A 10.00 U		
Gildinor 10	01120100 4		
I DOMESTIC STOLEN			

Es erscheint ein Dialogfenster mit den 8 möglichen Eingangsbereichen. Wählen Sie den gewünschten aus, betätigen Sie OK und schon ist der Eingangsbereich des entsprechenden Kanals definiert.

2.2.2. Kanaltyp

Neben dem Eingansbereich kann pro Kanal auch noch ein Typ definiert werden. Folgende Möglichkeiten bieten sich hier:

Тур	Beschreibung
Volt	Spannungsmessung
Ampére	Strommessung
Temperatur	Temperaturmessung mit Hilfe eines Thermoelementes
Ausgleichselement	Kompensation bei Temperatur- messungen mit Thermoelem.
temp. geregeltes Ausgleichselement	Kompensation bei Temperatur- messungen mit Thermoelem.
PT100-Ausgleichselement	Kompensation bei Temperatur- messungen mit Thermoelem.

Wählen Sie den gewünschten Kanal aus und betätigen Sie den Aktionsschalter CHANNEL TYPE.

∃ File I) <mark>igital</mark> Ar	na log	Control	Window		08:53:20
	r")	Chann	el Config	uration	of ADC-Card 1 ———	
	Channel	0	010.00	V	Input Kange	
	Channel	1	010.00		5 3 01 1 M	
	Channel	Z	010.00	Ŷ	LIJ Channel Type	894
	Channel	3	010.00	V		
	Channel	4	010.00	V	Volt	UK
	Channel	5	010.00	V III	Hmpere	
	Channel	5	010.00	V III	lemperature	01
	Channel	6	010.00	v .	Compensation EI.	Cancel
	Channel	8	010.00	V	Controled C. El.	
	Channel	9	010.00	V	Pt100 compen.El.	
	Channel	10	010.00	V		
	Channel	11	010.00	V	N.	
	Channel	12	010.00	V		
	Channel	13	010.00	V V		
	898889988888888888	83838383838	888888888888888888888888888888888888888	388888888888888888888888888888888888888	888888888888888888888888888888888888888	1999
Alt-X Exit	F2 Save	F3 Lo	ad Alt-F	3 Close	F6 Next F10 Menu	

Es erscheint ein Dialogfenster mit den 6 möglichen Kanaltypen. Wählen Sie den gewünschten, aus, betätigen Sie OK und schon ist der Kanaltyp definiert. Nun müssen Sie nur noch die Parameter 1..3(falls nötig) setzen.

a) Volt

Wurde dieser Typ gewählt, so sind die Parameter 1..3 nicht von Bedeutung und können somit auch nicht angewählt werden.

b) Ampere

Strommesswiderstände sind zwar auf der Karte nicht vorgesehen, spielt jedoch der Kontaktwiderstand der Stecker keine Rolle, so können externe Messwiderstände direkt an den R-Pins angelötet werden. Bei 200 Ohm können z.B. 0...50mA im 10V-Bereich mit einer Auflösung besser 1uA gemessen werden.

= File D	ligital An	alog	Control	Window			12:56:1
	-tu						_
	Channe1	0		15	Input	ange	
	Channel Channel	1	010.00		r		
	Channel	3	010.00	ů			
	Channe1	4	010.00	Ŭ			23
	Channel	5	010.00	V			
	Channel	5	9.10.00	ŭ	-		Cancel
	Channel	8	010.00	Ŭ			
	Channel	9	010.00	υ	Parame	ter 3 i	- 130 State State
	Channel	10	010.00		_		
	Channel	12	010.00	ŭ	k	Cancel .	
	Channel	13	010.00	V			
	HORSDOOD	120107					
					-		
14 V P14	P2 0	P2 1.		Foliare.	TE March	PIO Marrie	

Der Wert dieses Messwiderstandes (nur ganze Ohm im Bereich von 1..255 Ohm) kann unter PARAMETER 1 angegeben werden. Der Master rechnet dann die gemessene Spannung in einen gemessenen Strom um und schreibt das Resultat in mA ins DualportRAM.

c) Temperatur

Folgende Thermoelementtypen können direkt an die INFO-ADC angeschlossen werden:

Тур	Beschreibung	Bereich °C	Bereich mV
Typ R	Platin-13% Rhodium/Platin	-50°C1700°C	-0.2 20.2mV
Typ S	Platin-10%Rhodium/Platin	-50°C1700°C	-0.217.9mV
Тур В	Platin-30%Rhodium/Platin	6001700°C	1.812.4mV
Тур Ј	Eisen/Kupfer-Nickel	-200°C1200°C	-7.969.5mV
Typ L	Eisen/Kupfer-Nickel	-200°C900°C	-8.253.1mV
ТурТ	Kupfer/Kupfer-Nickel	-200°C400°C	-5.620.9mV
Typ U	Kuper/Kupfer-Nickel	-200°C600°C	-5.734.3mV
Тур Е	Nickel-Chrom/Kupfer-Nickel	200°C1000°C	-8.876.4mV
Тур К	Nickel-Chrom/Nickel	-200°C1300°C	-5.952.4mV

Hinweis: Für eine optimale Wahl zwischen Eingangsbereich und Thermoelement sind Sie selbst verantwortlich.

Channel 0 Channel 1 010.00 U Channel 2 010.00 U Channel 3 010.00 U Channel 4 010.00 U Channel 5 010.00 U Channel 5 010.00 U Channel 5 010.00 U Channel 6 010.00 U Channel 6 010.00 U	t lange Thermoelement type
Channel 1 010.00 U Channel 2 010.00 U Channel 3 010.00 U Channel 4 010.00 U Channel 5 010.00 U Channel 5 010.00 U PtRh-P	Thermoelementtype
Channel Z 010.00 U Channel 3 010.00 U Channel 4 010.00 U Channel 5 010.00 U Channel 5 010.00 U PtRh-P	Thermoelementtupe
Channel 3 010.00 V Channel 4 010.00 V Channel 5 010.00 V Channel 6 0.10.00 V PtRh-P	
Channel 4 010.00 V Channel 5 010.00 V PtRh-P Channel 6 0. 10.00 V PtRh-P	
Channel 5 010.00 U PtRh-P Channel 6 0.10.00 U PtRh-P	t, Tup K <u>Os</u>
Channel 6 0, 10, 00 U PtRb-P	t , Typ S 🛛 🚽
Guanno1 0 01110100 4 1 1001 1	tRh, Typ B
Channel 7 010.00 V Fe-CuN	i , Typ J Cancel
Channel 8 010.00 V Fe-CuN	i , Typ L
Channel 9 010.00 V Cu-CuN	і, Тур Т
Channel 10 010.00 U Cu-CuN	i, Typ U
Channel 11 010.00 V NiCr-C	uNi, Typ E
Channel 12 010.00 U	
Channel 13 010.00 V	
Channel 12 010.00 U Channel 13 010.00 U	

Der Thermoelementtyp wird unter PARAMETER 1 gewählt.

Die Temperatur der Anschlussklemme kann mittels Temperaturgeber (z.B. LM35) gemessen werden. Dieser Sensor wird an einem beliebigen Analog-Kanal angeschlossen, dessen Nummer (0..127) unter PARAMETER 2 angegeben wird.

= File D	igital Analog	Control Window		13:00:51
	Fill) Char			
	Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 8	80.02 U 010.00 U	Input Range C. 1 Channelnumber of the ar Coop. Elevent : 18 O. Canc	cording zel
	Channel 19 Channel 10 Channel 11 Channel 12 Channel 13	010.00 U 010.00 U 010.00 U 010.00 U 010.00 U	k Cancel	
Alt-X Exit	F2 Save F3 L	oad Alt-F3 Close	F6 Next F10 Menu	

Dieses Ausgleichselement muss nicht auf der selben ADC-Karte sein. Es kann sogar auf eine fiktive ADC-Karte gelegt werden, wenn es sich um ein Temperaturgeregeltes Ausgleichselement handelt. Wird kein solches benötigt, so kann irgend eine Kanalnummer angegeben werden, die nicht als Ausgleichselement definiert ist.

Die vom Master errechnete Temperatur wird in °C im Festkommaformat ins DualportRAM geschrieben.

d) Ausgleichselement

Ist an ein Kanal ein Ausgleichselement angeschlossen, so muss mit den 3 Parametern der Typ des Temperatursensors und der Thermoelementtyp angegeben werden.

Der Thermoelementtyp wird unter PARAMETER 1 angegeben (siehe c) Temperatur).

Für den Typ des Temperatursensors werden die PARAMETER 2 und 3 benötigt.

= File 1	Digital Analog	Control Window) 1 mai - Dan Sala Indiri kati - Dali - Dal	13:62:23
	Char			
	Channel 0 Channel 1	00.62 U 010.00 U	Input ange	ı 📗 📰
	Channel 2 Channel 3	010.00 U	-III- Woltage for 0°C	
	Channel 4 Channel 5	010.00 V 010.00 V	0.00 U	
	Channel 6 Channel 7	010.00 V 010.00 V	Can	el .
	Channel 8 Channel 9	010.00 V 010.00 V		
	Channel 10 Channel 11	010.00 V 010.00 V		
	Channel 12 Channel 13	010.00 V	k Cancel	
A14 V P14	F2 Cause F2 I	nal Alt P2 Class	TO No.4 TIO No.	
Alt-X Exit	FZ Save F3 I	oad Alt-F3 Close	: F6 Mext F10 Menu	

Mit PARAMETER 2 wird die Spannung, die der Temperatursensor bei 0°C abgibt, gewählt.

Mit PARAMETER 3 muss der Verstärkungsfaktor (Änderung in mV pro °C) des Sensors festgelegt werden.

Beispiel: LM35 : 0°C -> 0V, 10mV/°C

Hinweis : Im Messwertdoppelwort dieses Kanals erscheint die Temperatur in °C des Ausgleichselementes. Diese Tatsache ermöglicht es, 'low cost' Temperaturmessungen durchzuführen eben z.B. mit einem LM35-Sensor.

= 1116	bigital Hnalog	CONTROL	MINDON	13:60:
	Chan			_
	Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 7	9 0.82 910.00 910.00 910.00 910.00 910.00 910.00 910.00 9.10.00	V Input Pange V Scale Factor V 100 mU/°C V 100 mU/°C	
	Channel 9 Channel 10 Channel 11 Channel 12 Channel 13	010.00 010.00 010.00 010.00 010.00	V V V k Cance	

Alt-X Exit F2 Save F3 Load Alt-F3 Close F6 Next F10 Menu

e) Geregeltes Ausgleichselement

Hat man ein Temperatur geregeltes Ausgleichselement, so muss ein Kanal dafür 'geopfert' werden, obwohl physikalisch an diesem Kanal nichts angeschlossen ist. Das ist aber weiter nicht tragisch, da ja auch Kanäle dafür verwendet werden können, die physikalisch gar nicht existieren. Der Thermoelementtyp wird wie beim normalen Ausgleichselement unter PARAMETER 1 angegeben. Die Temperatur des Ausgleichselementes (nur ganze °C im Bereich von 0..255°C) kann unter PARAMETER 2 festgelegt werden.

= rile D	igital Analog	(Control Window	13:65:4
	[-[1] Char		of AUC-Card 1
	Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 8 Channel 10 Channel 11 Channel 12	9 0.02 V 910.00 V 910.00 V 910.00 V 910.00 V 010.00 V	Input Pange Temperature of the Compensation Element (°C) : 20 Cancel Ok Cancel
A14 V P14	P1 0	Kolance	TE No.4 Flo Nor

f) PT100 - Ausgleichselement

Es kann auch ein PT100-Fühler zur Temperaturmessung der Ausgleichstelle verwendet werden. In diesem Fall muss unter PARAMETER 2 die Kanalnummer (0..127) des entsprechenden Sensors angegeben werden.

\equiv File D	igital Ana	log Control	∐indow		09:03:30
	Channel Ø	0 0.02	V	Input Rang	e 📲
	Channel 1	010.00	V		
	Channel 2	010.00	V	[1]	-
	Channel 3	010.00	Ų		
	Channel 4	010.00	Ų		100 Channel
	Channel 5	010.00	Ų		20
	Channel 6	010.00	Ų		
	Channel 7	010.00	V	0k	Cancel
	Channel 8	010.00	Ų		
	Channel 9	010.00	V		
	Channel 1	010.00	V -		
	Channel 1	1 010.00	V		
	Channel 1	2 010.00	V	0 k	Cancel
	Channel 1	3 010.00	V		
		*****	*****	*****	R00780.00080.00080.0008
ALL V Evit	F2 Saus F	Lood 014-1		TO Nove T10	Мохи
TIXI A LXIL	IC DAVE I	J LOAU HIL-I	0.01026	TO HEXU TIO	nenu

3. ADC - Werte anzeigen

Starten Sie SHOW.EXE und wählen Sie den Menüpunkt ANALOG. Es erscheint ein weiteres Menü mit den aktuell am INFO-Link hängenden Analog-Karten. Wählen Sie die gewünschte Karte (in unserem Fall eine ADC) aus und schon werden die gemessenen Werte (je nach Kanalkonfiguration in V, mA, °C) dieser Karte übersichtlich in einem Fenster dargestellt.

Ξ.	Inputs	Outputs	Counters	Analog	Control	Window	Options	17:57:52
			101	- Card I			-	
			Channel 8			6.8553	- U 232	
			Channel 1		1. RRIU :	1,89232		
						188.262	-	
			Channel 3			399.59		
		1.11.11.111	Channel 4		I PPI U :	6.8551	- UII 230	
					BR U :	1 89233	7 1 0 0 0	
						189 263		
			Channel 2			20.0622		
			Channel 8		1 001 11 1	26.67	20 0000	
			Charmel 0			0.0		
			Channel 19			1.0101		
			Construct 14			4 5054	1 0.00	
			Unannel II			-1.2824		
			Channel 12			1.5650	- M 833	
		9 OF 19 OF 1	Channel 13			-1.5854		
		1.11.11.11.					5.00	

In der untersten Zeile steht der Zustand der Karte. Folgende Möglichkeiten gibt es hier :

Card ok.

Die ADC-Karte meldet sich korrekt.

Card doesn't answer.

Es meldet sich keine Analog-Karte unter dieser Nummer.

Wrong card type.

Es meldet sich zwar eine Analog-Karte unter dieser Nummer, es handelt sich dabei aber nicht um eine ADC-Karte.

Wrong card version.

Es meldet sich zwar eine ADC-Karte unter dieser Nummer, diese hat aber eine ältere Versionsnummer als die Systemsoftware und ist somit nicht korrekt ansprechbar.

Card error.

Die ADC-Karte hat einen Defekt und muss repariert werden.

EEPROM reading

Das EEPROM der Karte wird gelesen. Die Messwerte können leicht von der Wirklichkeit abweichen, weil mit Default-Korrekturdaten gerechnet werden muss, bis der EEPROM Transfer abgeschlossen ist.

4. **Programmiertips**

Folgende Bereiche des DualportRAM's (Standardkonfiguration) sind für die INFO-ADC von Bedeutung:

Adre von	sse bis	Grösse	Name	Beschreibung			
100	2FF	128*DOUBLE	P_ANABAS	Analoge Ein- und Ausgänge 0127. Jed möglichen 8 Analog-Karten werden 16 k (16 Doppelworte zugewiesen (Karte 3 e die Kanäle 4863). Die 16 Kanäle der A folgendermassen aufgeteilt: 013: Messwerte der 14 ADC-Eingänge Festkommaformat, d.h. im zur Verfügur henden Doppelwort stehen im oberen W ganzen mV, mA oder °C und im unterer Kleingemüse (1/65536 stel mV, mA, °C 14: wird nicht gebraucht 15: Bit 013: definiert die zu behandelne Kanäle: Bit x gesetzt => Kanal x wird n gemessen	ler der (anäle rhält z.B. DC sind sim ng ste- Vort die n das). den nicht		
300	4FF	128*DOUBLE	P_ANADEF	Kanäle: Bit x gesetzt => Kanal x wird nicht gemessen Analoge Kanaldefinitionen 0127,. Jeder der möglichen Analog-Karten werden 16 Doppelv zur genaueren Kanaldefinition zugewiesen. E der ADC sieht so ein Doppelwort folgenderma sen aus: Byte 0: Bit 03= Eingangsbereichnumm Bit 47= Kanaltypnummer Byte 1, 3: Parameter 1, 3			

Adre	sse			
von	bis	Grösse	Name	Beschreibung
700		BYTE	P_NROFAC	Anzahl Analogkarten. Dieser Parameter wird nur bei der Initialisierung berücksichtigt und kann nicht nachträglich geändert werden.
720	75F	8*2*DOUBLE	P_ANACFG CFG_TYP CFG_ERR CFG_NCH	Spezifikation der Analog-Karten (je 2 Doppel- worte). 1. Doppelwort: Byte 0 = 1 (ADC) Byte 1 = Kartenfehler Byte 2 (Bit 06) Anzahl Kanäle. Mit diesem Byte wird bestimmt, wieviele Kanäle der Karte bearbeitet werden sollen. Steht hier z.B. eine 3, werden nur die Kanäle 0,1,2 bedient. Byte 2 (Bit 7) Gesetzt, bedeutet, es soll nur ein Kanal gemes-
			CFG_ACH	sen werden (Nr in Bit 06) Byte 3 = Aktueller Kanal. Hier wird ange- geben, welcher Kanal als letzter gerade bearbei- tet wurde und kann zu Synchronisationszwecken benutzt werden.
			CFG_SPC	2. Doppelwort. Byte 0 (Bit 0) Gesetzt, die Referenzen werden getoggelt gemessen. Byte 0 (Bit 1) Gesetz, es wird, wenn möglich im 1sec Zyklus gemessen. Byte 0 (Bit 4,5) Konvertierungszeit: 00 -> 80ms 01 -> 60ms 10 -> 50ms
				Byte 0 (Bit 6,7) Messgenauigkeit: 00 -> 16 Bit 01 -> 14 Bit 10 -> 15 Bit
			CFG_SWT	Byte 1 = Einschwingzeit in ms Byte 2,3 reserviert für zukünftige Anwendungen.
				2. Doppelwort: reserviert für zukünftige Anwendungen

Nummer	Bereich
0	0 10V
1	0 1V
2	0 0.1V
3	0 0.02V
4	+-10V
5	+-0.1V
6	+-0.1V
7	+-0.02V
3 4 5 6 7	0 0.02V +-10V +-0.1V +-0.1V +-0.2V

Kanaltypnummern:

Nummer	Тур
0	Volt
1	Ampére
2	Temperatur
3	Ausgleichselement
4	Temp. geregeltes Ausgleichselement
5	PT100-Ausgleichselement

Zusammenhang Kanaltyp <-> Parameter 1..3:

			Kanaltyp								
		0	1	2	3	4	5				
P	1	-	Wider Standswert 1255Ohm	Thermoele- menttyp	Thermoele- menttyp	Thermoele- menttyp	Thermoele- menttyp				
A R A M E T E R	2	-	-	Kanalnum- mer des da- zugehörenden Ausgleichs- elementes	0°C Spannung des Tempe- ratursen- sors	Temperatur des Aus- gleichs- elementes 0255°C	Nr. des PT100- Kanales				
	3	-	-	-	Skalierungs Faktor Temperatur- sensors	-	-				

Nr.	Тур	Beschreibung	Bereich °C	Bereich mV
0	Typ R	Platin-13% Rhodium/Platin	-50°C1700°C	-0.2 20.2mV
1	Typ S	Platin-10%Rhodium/Platin	-50°C1700°C	-0.217.9mV
2	Тур В	Platin-30%Rhodium/Platin	6001700°C	1.812.4mV
3	Тур Ј	Eisen/Kupfer-Nickel	-200°C1200°C	-7.969.5mV
4	Typ L	Eisen/Kupfer-Nickel	-200°C900°C	-8.253.1mV
5	ТурТ	Kupfer/Kupfer-Nickel	-200°C400°C	-5.620.9mV
6	Тур U	Kuper/Kupfer-Nickel	-200°C600°C	-5.734.3mV
7	Тур Е	Nickel-Chrom/Kupfer-Nickel	200°C1000°C	-8.876.4mV
8	Тур К	Nickel-Chrom/Nickel	-200°C1300°C	-5.952.4mV

Thermoelementtypen:

Hier noch ein paar zusätzliche Tips:

- um die Anlagensicherheit zu erhöhen, sollte mit P_ANACFG.CFG_ERR periodisch sichergestellt werden, dass sich die ADC-Karte noch korrekt auf dem Bus meldet.

Festkomma:

- sind sie mit einer Auflösung von ganzen mV, mA oder °C zufrieden, so müssen Sie nur das obere Wort von P_ANABAS betrachten
- wollen Sie hingegen die volle Auflösung nutzen, müssen Sie zuerst den DualPortRAM-Wert in eine Realzahl umwandeln:

Beispiel in C : DOUBLE value value = aptr->ainout[kanal]/65536;

Beispiel in Pascal value : REAL; value := aptr^.ainout[kanal]/65536;

- die Konvertierungszeit pro Kanal ist von Ihrer Konfiguration abhängig
- ist es aus irgend einem Grund notwendig, sich mit dem Master zu synchronisieren, so kann mit Hilfe von P_ANACFG.CFG_ACH festgestellt werden, welcher Kanal der Master gerade bearbeitet hat.
- Beispiele in C und Pascal finden Sie auf der mitgelieferten Diskette im Direktory BEISPIELE.
- da der Kanaleingangsbereich während des Betriebs geändert werden kann, ist ein Multirangebetrieb softwaremässig möglich.

Beispiele in C und Pascal finden Sie auf der mitgelieferten Diskette im Direktory BEISPIELE.

5. Technische Daten

5.1. Steckerbelegung

d					b				Z			
2 4	 	+ -	V V	8 8		+ -	R R	8 8		,	Schirm Schirm	
6 8	 	+ -	V V	9 9		+ -	R R	9 9			Schirm Schirm	
10 12	 	+ -	V V	10 10		+ -	R R	10 10			Schirm Schirm	
14 16	 	+ -	V V	11 11		+ -	R R	11 11			Schirm Schirm	
18 20	 	+ -	V V	12 12		+ -	R R	12 12			Schirm -15V	
22 24		+ -	V V	13 13		+ -	R R	13 13			+15V Schirm	
26 28			gne Gne))	 0	+ +	Sens Vou	e 0 t 0	 0	+ +	Sense 1 Vout 1	
30 32		+ +	24 24	V V	0 	-	Vou Sens	t 0 e 0	0 1	-	Vout 1 Sense 1	

Stecker 1 stehend DIN 41612, Typ F-48 2.8mm Steckzungen

		d			b				z	
2 4	I	ERDE Schirm		+ -	R R	0 0		+ -	V V	0 0
6 8		Schirm Schirm		+ -	R R	1 1		+ -	V V	1 1
10 12		Schirm Schirm	I	+ -	R R	2 2	 	+ -	V V	2 2
14 16		Schirm Schirm		+ -	R R	3 3	 	+ -	V V	3 3
18 20		Schirm Schirm	I	+ +	R R	4 4	 	+ +	V V	4 4
22 24		Schirm Schirm		+ -	R R	5 5	 	+ -	V V	5 5
26 28		Schirm Schirm		+ -	R R	6 6	 	+ -	V V	6 6
30 32		Schirm Schirm	I	+ -	R R	7 7		+ -	V V	7 7

Stecker 2 stehend DIN 41612, Typ F-48 2.8mm Steckzungen

5.2. Anschlussbeispiel

Karten-Speisung

Für die Kartenspeisung reicht ein 3-Phasen-Gleichrichter ohne Elko aus. Um Störungen zu vermeiden, wird jedoch ein Elko von 4700 ... 10'000 uF empfohlen.

Schirme und Erdung

Um Erdschlaufen zu vermeiden, sollten die Schirme nur einseitig aufgelegt werden. Sind die Thermoelemente z.B am Montageort geerdet, so dürfen sie an der Karte nicht mehr angeschlossen werden. Die INFO-ADC-Karte sollte nur an einem Punkt (Stecker 2, Pin 2d) geerdet werden.

Beachte: Die Eingänge sollten immer einen gewissen Bezug zum Karten-GND (Schirm-Pins) haben. Werden floatende Spannungsquellen (z.B. Thermoelemente) angeschlossen, so ist z.B. das -V in bzw. das -R-Pin mit einem Schirm-Pin zu brücken. Messen Sie keine offenen Eingänge (Anzahl Kanäle begrenzen) oder legen Sie die freien Eingänge auf GND.

5.3. Spezifikationen

Speisung

+18..36V, ____mA max

Lagertemperatur

-20..+80 Grad Celsius

Betriebstemperatur

0..+70 Grad Celsius

Mess-Bereiche

Pro Kanal softwaremässig einstellbar: 10V, 1V, 0.1V, 20mV alle Bereiche unipolar oder bipolar. Autorange ist softwaremässig realisierbar.

Auflösung

1/60'000 vom Messbereich

Genauigkeit

In allen Bereichen besser 0.02% vom Messbereich bei 25 Grad Celsius Umgebungstemperatur.

Drift

30ppm/Grad Änderung der Umgeb. Temp.

Referenz

Auf der Karte ist eine hochpräzise Referenz für alle Messbereiche eingebaut, deren Eigenschaften zusätzlich ausgemessen und im EEPROM abgelegt werden. Im Betrieb misst sie der INFO-Master automatisch mit und korrigiert damit den Offset und Gain-Drift. Auf der Karte kann nichts abgeglichen oder verstellt werden!

Aufwärmzeit

Obwohl Offset und Gain dauernd gemessen und Ausgeglichen werden, ist mit einer Aufwärmzeit von ca. 15 Minuten zu rechnen, bis die optimale Stabilität der Messwerte erreicht ist.

Anschluss

Differenzial-Eingänge über abgeschirmte Leitungen.

Erdung

Da die Karte vom INFO-Link und von der Speisung galvanisch getrennt ist, kann das Pin 2d bei Bedarf geerdet werden, ohne dass Erdschlaufen entstehen (verhindert floaten der Karte und der Fühler).