TTL-Interface

INFO-TTL

The INFO-TTL is a universally applicable digital I/O module. The board incorporates 16 inputs and 16 outputs with TTL level. Two different versions are available:

1 bidirectional port with control lines, or 16 separate inputs and outputs. The module is designed for mounting on a printed circuit board. By reprogramming of the GAL logic, it is possible to incorporate additional functions; e.g. Interrupt inputs and outputs. This makes the INFO-TTL module a very flexible and cost-effective interface between existing extraneous devices and the INFO-Link.

1

Technical Data

Inputs

- 16 inputs
- 5V, TTL
- Maximum 4,000 inputs per INFO-Link
- Control line: Busy

Outputs

- 16 outputs
- 5V, TTL
- Maximum 4,000 outputs per INFO-Link
- Control line: Data Valid

Parallel port

- Bidirectional interface with WR, OE, CS control lines
- 16 bit data word, TTL level

Design versions

 Two different layouts: Different configuration of the INFO-Link transmitter-receiver modules.

Order-No INFO-TTL 609724201 Order-No INFO-TTL 609724201-AMK Order-No INFO-ZLK 609724201

CH-8332 Russikon Tüfiwis 26

Rev. 0903

INFO-TTL

TTL-Interface

Mode of Operation

The INFO-TTL board covers 16 TTL inputs. At the same time, 16 TTL outputs can be activated.

The module can, within certain limits, be extended by additional or other functions. The output "LED" (pin 31 on connector 2) indicates the status of the yellow LED Link Receiver Signal OK.

The following two variants have been implemented to date:

16 inputs and outputs

In the version with 16 separate inputs and outputs, the module makes two control lines available. (See Timing Diagram, page 4)

Busy signal

While the Busy signal is active (low), nothing must be written into the input register. Otherwise, invalid values may be read in.

Data Valid

The DVal signal is activated for 180ns (high) when new data is present in the output register.

Parallel port

As a parallel port, the module is addressed with the control lines WR, OE, CS. (See Timing Diagram, page 5)

IN software tems, the board behaves like an INFO-4kp. For additional infomation, see the software operating instructions in the INFO binder.

CEn	Controller Enable
QRF	Acknowledgment Enable
Syn	Start Sync Run
SyEr	Sync Position reached
NP	Zero Pulse

Connector Allocations

Connector	1

36 pin array

two rows

1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 14	01234567		+5V In0 In1 In2 In3 In4 In5 In6 In7 In8 In7 In8 In10 In11 In12 In13 In14	+5V WR OE CS Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd		36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20
1	6	I	In13	Gnd	I	21
1	7	Ī	In15	Gnd	I	20
18	8	I	Gnd	Gnd	I	19

$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\$	I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+5V +5V Out0 Out1 Out2 Out3 Out4 Out5 Out6 Out7 Out8 Out7 Out8 Out10 Out11 Gnd	+5V +5V Busy DVal LED CEn QRF Syn SyEr NP Out15 Out14 Out13 Out12 Gnd	I I I 0 0 0 0 I 0 I I 0 0 0 0 I	36 35 34 33 29 28 27 26 25 24 23 22 21
15	Q	Out11	Out12	Ò	22
16		Gnd	Gnd	I	21
17	I	Gnd	Gnd	1	20
18	Ι	Gnd	Gnd	Ι	19

www.indel.ch Tel. +41 44/956 20 00

Connector 2

36 pin array two rows

2

TTL-Interface

INFO-TTL

Assembly

Addressing INFO-TTL (blau)

The INFO-TTL occupies one I/O board place (INFO-16p).

S2(0)	/),S1(X0)	I/O-Karte
0	0	0
0	1	1
0	2	2
1	0	16
1	1	17
0F	0F	255

Addressing INFO-TTL AMK (blau)

The INFO-TTL-AMK occupies one channel of one INFO-4KP board.

S2(0)	/),S1(X0)	4KP Karte	Kanal
0	0	0	0
0	1	0	1
0	2	0	2
0	3	0	3
1	0	1	0
1	1	1	1

LEDs on receiver module

LED-red	=	+5V powe r supply
LED-yellow	=	INFO-Link receiver signal OK

Transmit power jumpers (green)

The jumpers influence the illumination intensity of the emitting LED and thereby the segment length of the fiberoptic cable to the next board.

3

Segment length	Jumper position
0 10m	nojumper
8 30m	>10
20 50m	>30

Specifications

Power supply

- +5V, 250mA max.
- No electrical isolation

Climatic conditions

-	Ambient temperature:	:
	Storage:	-20+80°C
	Operation:	0 +45°C
-	Board temperature:	
	Operation:	0+65 °C
-	Relative air humidity	
	no condensation:	95%

Inputs

- 16 inputs
- 5V, TTL
- No electrical isolation

Outputs

- 16TTLoutputs
- No electrical isolation

Mounting

- Printed circtuit board mounting
- Dimensions:
- 63.5 x 60 x 15mm (LxWxH)

Design versions

The INFO-TTL module is available in two layout versions: On the one hand the variant sketched above with the transmitter and receiver modules arranged one below the other, on the other hand with transmitter and receiver modules arranged opposite each other. (Receiver facing transmitter).

Please ask for the INFO-ZLK module.

Customized modifications are available as needed.

INFO-TTL

TTL-Interface

TTL-Interface

INFO-TTL	97242
INFO-ZLK	97257

The TTL-Interface uses pins 2 ... 17 (connector 1) as input signals and pins 4 ... 15, 22 ... 25 (connector 2) as output signals.

The input interface of the INFO-TTL module makes a Busy signal available.

During Busy active (low), the input word must not be changed.

Three clock cycles after Busy active, the inputs are read in and transmitted via the bus.

The signal DVal (active high) is present during 180ns when new valid output values are present.

If incorrect data is received (interference), the last value correctly received will be retained.

With Link Down, all outputs drop off.

Timing Diagram

TTL interface: Timing inputs

TTL interface: Timing outputs

4

TTL-Interface

INFO-TTL

Timing Diagramm

Timing Diagram

Read	Cycle	Min	Max	Unit
Trc	Read Cycle Time	50		ns
Tacs	CS low to Data Valid		10	ns
Tdoe	OE low to Data Valid		10	ns
Tlzoe	OE low to Data out Start	10		ns
Thzoe	OE high to Data Line Tri-State		10	ns
Thzcs	CS high to Data Line Tri-State		10	ns
Write	Cycle	Min	Max	Unit
Write Twc	Cycle Write Cycle Time	Min 50	Max	Unit ns
Write Twc Tscs	Cycle Write Cycle Time CS low to Write End	Min 50 50	Max	Unit ns ns
Write Twc Tscs Tsa	Cycle Write Cycle Time CS low to Write End Address, CS Set (Jp to Write Start	Min 50 50 0	Max	Unit ns ns ns
Write Twc Tscs Tsa Tsd	Cycle Write Cycle Time CS low to Write End Address, CS Set Up to Write Start Data Set-Up to Write End	Min 50 50 0 8	Max	Unit ns ns ns ns
Write Twc Tscs Tsa Tsd Thd	Cycle Write Cycle Time CS low to Write End Address, CS Set Up to Write Start Data Set-Up to Write End Data Hold From Write End	Min 50 50 0 8 0	Max	Unit ns ns ns ns ns

Parallel Port

INFO-TTL 97242-AMK

The parallel port uses pins 2 ... 15 of connector 1 as bidirectional I/O signals. The output signals of connector 2 are not required.

Read cycles with permanently wired CS, OE = low signals are not allowed. The logic in the GAL can in this case not load any current values to the output register.

At least one of the CS, OE control lines must be raised after the Read cycle.

Between two read cycles, at least 500ns must elapse.

Between two write cycles, at least 400ns must elapse, otherwise the GAL will be unable to accept the input values.

The "Sync_reached" signal must be transferred highly synchronously with the zero position. The zero position must always be transmitted with the "Sync_reached" signal in the same telegram.

To allow the current actual data to be transmitted in the WR cycle, the time Tdwr of $4\mu s$ is needed before the signal DVAL.

CH-8332 Russikon Tüfiwis 26