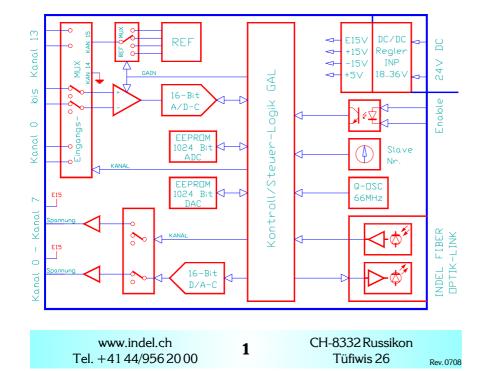
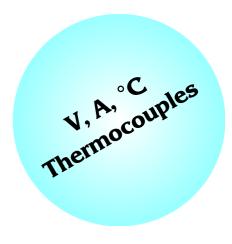

Analog./Digital/Analog. Converter

INFO-ADA


The INFO-ADA board is the multifunctional analog/digital board in the INFO-Link range.


14 analog inputs and 8 analog outputs are available on the INFO-ADA board. The analog/digital converter measures voltages, currents and temperatures with 16Bit resolution. Each channel can be separately configured.

With the $\pm\,10V$ outputs, it is possible to activate flow controllers, proportional

valves or shaft speed controllers of motors and frequency converters.

The board does not incorporate any potentiometers for alignments. Offset and gain corrections are saved for inputs and outputs in the on-board EEPROM. The INFO-Master corrects all outputs by the appropriate factors during operation. The DAC-part has a board enable; it allows emergency stop functions to be implemented.

Technical Data

Analog inputs

- 14 analog measurement channels
- Eight measurement ranges: ±10V, 10V... ±25mV, 25mV
- 14 ... 16 bit resolution, as required
- Adjustable 50/60Hz filter

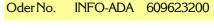
Analog outputs

- 8 analog voltage outputs
- Voltage range: ±10V
- 16 bit resolution, 1/65,000 of the measurement range

Reference

- Automatic alignment of zero point and full scale

Emergency OFF


- Enable input, +24V
- Electrically isolated

15V power supply (on-board)

- Additional 15V supply

Board power supply

- Electrically isolated
- Power supply 18 ... 32V, 520mA max.

Mode of Operation

Analog digital converter

A measurement is performed in two phases:

In the first phase, the channel is switched on during a configurable stabilization time. Transient processes are completed during this phase.

In the second phase, the analog quantity is measured during the adjustable measurement time.

The measurement time per cardcan be selected according to the following table.

Resolution:	Measurement time:
16Bit	50, 60, 80ms
15Bit	25, 30, 40
14Bit	12.5, 15, 20

For the stabilization time, values between1...20ms can be specified.

The measurement is performed using an integrating process so that any interference, e.g. from the power supply (50/ 60Hz), can be filtered out.

The field bus master automatically measures all selected channels, corrects any offset and gain, and converts it to the desired unit.

Temperatures are compensated by the compensation temperature (fixed value or from compensation element), linearized and converted directly to degrees centigrade.

The processed measurement values can be addressed in the field bus master or by the PC via their names.

Digital analog converter

The INFO-ADA board can output eight voltages of $\pm 10V$ with a resolution of 16Bit.

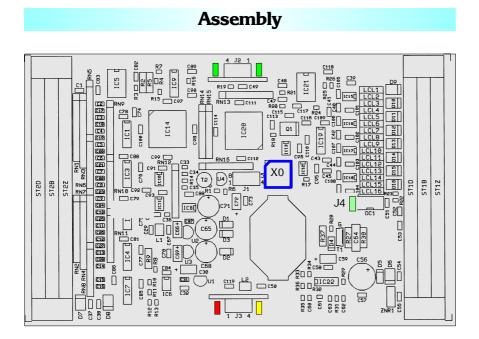
With the standard firmware, one channel is transmitted per ms and per board so that all DAC values are updated after 8ms. Faster refresh rates are available upon request.

Connector	Allocation
-----------	------------

				d				b		Z
	2 4	0 0		Vout Vout	0 1	0 0	- -	Vout Vout	0 1	Shield Shield
	6 8	0 0		Vout Vout	2 3	0 0	-	Vout Vout	2 3	Shield Shield
	10 12	0 0		Vout Vout	4 5	0 0	- -	Vout Vout	4 5	Shield Shield
	14 16	0 0		Vout Vout	6 7	0 0	-	Vout Vout	6 7	Shield Shield
	18	Ι	+]	Enable	9	Ι	- 1	Enable		Shield
	20 22 24	0 0 0	+ -	15 15 GND	V V	0 0 0	+ -	15 15 GND	V V	Shield Shield Shield
Connector 1	26 28			0 0	V V					
vertical DIN 41612, Type F-48 2.8mm pins	30 32		+ +	24 24	V V					

		d			b				Z	
	2	Shield Shield	I I	+++	Vin Vin	0 1	I I	-	Vin Vin	0 1
	5	Shield Shield	I I	+++	Vin Vin	2 3	I I		Vin Vin	2 3
10 12		Shield Shield	I I	++++	Vin Vin	4 5	I I		Vin Vin	4 5
14 16		Shield Shield	I I	+++	Vin Vin	6 7	I I		Vin Vin	6 7
18 20		Shield Shield	I I	+++	Vin Vin	8 9	I I		Vin Vin	8 9
22 24		Shield Shield	I I	+++	Vin Vin		I I		Vin Vin	
Connector 2 28		Shield Shield	I I	++++	Vin Vin	12 13	I I		Vin Vin	12 13
vertical DIN 41612, Type F-48 3 2.8mm pins)	Shield Shield	0 0	+	15 GND	V	0 0	-	15 GND	V

All alignments have been made during quality checking at INDEL. The values are saved in an on-board EEPROM. The board does not incorporate any potentiometers; there is nothing to align or vary!


www.indel.ch Tel. +41 44/956 20 00

2

CH-8332 Russikon Tüfiwis 26

Analog./Digital/Analog. Converter

INFO-ADA

Addressing (blue)

S1 (X0)	ADC-Addr.	DAC-Addr.					
0	0	1					
1	1	0					
E	14	15					
F	15	14					

Transmit power jumpers (green)

The jumpers influence the illumination intensity of the emitting LED and thereby the segment length of the fiberoptic cable to the next board.

Segment length	Jumper position
0 10m	nojumper
8 30m	>10
2050m	>30

Enable jumper (light green)

Instead of the +24V on the board enable (pins 18d, 18b; connector 1), it is possible to set the jumper J5.

LEDs on receiver module

LED-red	=	+5V power supply
LED-yellow	=	INFO-Link receiver signal OK

Temperature measurement

Туре	Trade name
Type T,(J	Cu-Konst
Type J,L	Fe-Konst
Type E,K	Chromel-Alumel
Type B,E,R	Platin-Rhodium

The thermocouples opposite are connected directly to the INFO-ADA. The operating system linearizes them automatically. Mixed assemblies with any required, different types are possible.

www.indel.ch						
Rev 0708	Tel. +41 44/956 20 00					

3

CH-8332 Russikon	
Tüfiwis 26	

Specifications

Power supply

+18..32V, 520mA max.

Climatic conditions

Ambient temperature:	
Storage:	-20+80°C
Operation:	0+45°C
Board temperature:	
Operation:	0+70°C
Relative air humidity	
no condensation:	95%
	Operation: Board temperature: Operation: Relative air humidity

Analog inputs

An	ialog input	S							
-	14 independent, differential measurement								
	channels.								
	Each channel can be configured								
	as required (range). Resolution in μ V:								
	Range	16Bit	15Bit	14Bit					
	010V	150	300	600					
	01V	15	30	60					
	00,1V	1.5	3	6					
	025mV	0.3	0.6	1.2					
	± 10V	300	600	1200					
	$\pm 1V$	30	60	120					
	± 0,1V	3	6	12					
	± 25mV	0.6	1.2	2.4					
	Resolution Msmt.time per channel								
	16Bit 80, 60 or 50ms								
	15Bit 40, 30 or 25ms								
	14Bit		20, 15	5 or 12.5ms					
	plus stabiliz	zation tin	ne: 1 20	ms per					
	channel.								
-	Precision: <0.02% of measurement								
	range at 25 degrees								
-	Drift: 5ppm/ ΔK								
-	Max. input	voltage:		±15V					
An	alog outpu	uts							
•	8 outputs:			±10V					
	D h - t			200 V/L:					

A

-	8 outputs:	±10V
	Resolution:	300μ V/bit
	Current:	I _{max} =5mA
-	Internal resistance:	$R_1 = 110\Omega$
-	Refresh rate / channel:	1ms
-	Precision:	2mV bei 25°C
-	Drift:	3ppm/ΔK

15V power supply (on-board)

 $2 \text{ x} \pm 15 \text{V} \pm 10\%$, 50mA max.

EMERGENCYOFF

As long as no 24V are present at the ENABLE input, the board will output OV on all channels. (Jumper J4 not set.)

Warm-up time

The optimal stability of the measurement values is reached after approx. 15min warm-up time.

Mounting

- Connector DIN 41612, Type F-48
- Mounting on 35mm DIN bar
- 105 x 165 x 45mm (WxDxH)

INFO-ADA

Analog./Digital/Analog. Converter

Connection Example

Connections

Board power supply

For the board power supply, a 3-phase recitifer without electrolytic capacitor will suffice. But in order to prevent interference, an electrolytic capacitor of 4,700 \dots 10,000µF is recommended.

The 24V power supply must pass through a line filter.

Shielded lines

All analog signal lines must be shielded. The shield must be connected at both ends.

In order to prevent undesired leakage currents through the shield, it may be necessary to provide a bonding conductor, especially in case of long distances.

Grounding

The INFO-ADA is grounded through the housing. Make sure that the mounting bar has very good contact with the mounting plate or chassis to allow interference to be discharged.

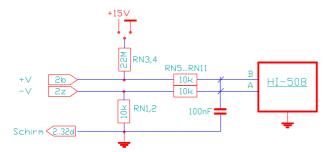
See also INDEL Wiring Guidelines and INDEL Design Guidelines.

Customized modifications are available as needed.

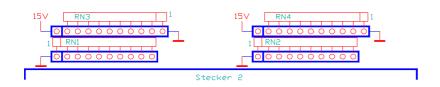
4

Analog./Digital/Analog. Converter

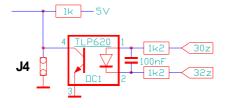
INFO-ADA


Wiring

Interfaces


Analog outputs

Analog inputs



Resistor array assembly

Input lines $\pm V$ wired to Gnd.

Enable input

Voltage outputs

Wiring of the voltage output.

Analog inputs

Wiring of the analog inputs. The sensors are connected directly to pin \pm V. The plug-in resistor arrays RN1... RN11 allow the inputs to be configured according to individual requirements.

The number of inputs should be limited in the configuration of the board so that there are no open inputs.

The inputs can be wired with the resistor arrays RN3,4 as required to Gnd or +15V. They will thereby always be in a defined state, even when open. As standard RN3,4 is wired to Gnd.

Enable input

At the enable input, 24V must be present if the board is to output the voltage values.

Note

Frequently, the temperature of the connection terminal is measured by temperature transmitters (e.g. LM35). As these are supported by the firmware, it is possible to perform 'low cost' temperature measurements using these temperature sensors.

www.indel.ch _{Rev.0708} Tel. +41 44/956 20 00

CH-8332 Russikon Tüfiwis 26

