Inhaltsverzeichnis

1.	Einlei	tung	3
2.	Konfig	guration	4
	2.1.	Karte	
	2.2.	Kanal	6
	2.2.1.	Eingangsbereich	7
	2.2.2.	Kanaltyp	
3.	ADC -	Werte anzeigen	
4.	Progra	ammiertips	
5.	Techn	ische Daten	
	5.2.	Steckerbelegung	
	5.2.	Anschlussbeispiel	
	5.3.	Spezifikationen	24

1. Einleitung

Die Extern-ADC Karte kann Spannungen bis 10V mit einer Auflösung von wahlweise 14, 15 oder 16 Bit messen. Die Verstärkung kann pro Kanal x1,x10,x100 und x500 und bipolar (+-10V) oder unipolar (0..10V) softwaremässig eingestellt werden. Die Karte wird über ein 4-Draht Kabel an den IO-Master im PC oder im INDEL-Rechner angeschlossen und kann bis zu 1km abgesetzt werden. Dadurch minimiert sich der Verdrahtungsaufwand und damit auch die Störeinflüsse. Bis zu 14 Messsignale (Spannung, Strom, Temperatur-Fühler) werden direkt an der Karte angeschlossen. Vier hochpräzise Referenz-Spannungen für den automatischen Nullpunkt- und Fullscale-Abgleich sind auf der Karte fest eingebaut. Da die Karte pro Kanal genau 80ms lang integrierend misst, werden Störungen (z.B. vom Netz) vollständig ausgefiltert. Um Erdströme zu vermeiden ist die Karte gegenüber der Speisung und dem Feldbus galvanisch getrennt. Der IO-Master misst automatisch alle gewählten Kanäle mit der gewünschten Verstärkung, korrigiert Offset und Fullscale und übergibt die Messwerte unabhängig von der Bereichswahl in mV mit Festkomma im Dualport-Ram. Temperaturen werden zusätzlich mit einem beliebig wählbaren Kanal kompensiert, linearisiert und direkt in Grad Celsius übergeben.

2. Konfiguration

2.1. Karte

Starten Sie CONFIG.EXE und wählen Sie den Menüpunkt ANALOG. Es erscheint ein weiteres Menü mit den Optionen NUMBER OF CARDS und CONFIGURATION. Wählen Sie die erste Option, um die Anzahl Analog-Karten (PT100, ADC, DAC usw.), die an Ihrem Master hängen, zu definieren (max. 8). Anschliessend öffnen Sie mit CONFIGURATION ein Dialogfenster, welches die genauere Spezifikation Ihrer Analog-Karten erlaubt.

Das Fenster enthält eine Liste mit der von Ihnen gewählten Anzahl Analog-Karten und die Aktionsschalter CARD TYPE, NUMBER OF CHANNELS und CHANNEL CONFIG.

Auswahl einer Analog-Karte :

Drücken Sie die TAB-Taste so oft, bis eine Karte in der Liste hervorgehoben dargestellt wird. Anschliessend können Sie mit den Pfeiltasten die gewünschte Karte auswählen. Mit der Maus müssen Sie nur die entsprechende Karte anklicken.

Betätigung eines Aktionsschalters :

Drücken Sie die TAB-Taste so oft, bis der gewünschte Aktionsschalter hervorgehoben dargestellt wird und anschliessend <enter>. Mit der Maus müssen Sie nur den entsprechenden Aktionsschalter anklicken. **Hinweis:** Noch nicht definierte Analog-Karten erscheinen 'by default' als PT100 in der Liste.

Die Vorgehensweise, eine Analog-Karte als ADC zu definieren, erklären wir am besten anhand eines Beispiels.

Nehmen wir einmal an, wir haben 4 Analog-Karten an unserem Master und wollen die Karte Nr. 1 als 16 Bit - ADC definieren.

∃ Fi	le Di	gita	l Analog	Control	Window		12:47:56
	Card Card Card Card Card	0 1 2 3	PT160 DAC ADC	g Cards - Card Nunber o	1 Tupe of channels		
				Canne	el Config	PT100 DeC	Cancel
Alt-X	Exit	FZ 5	ave F3 Lo	ad Alt-I	Foliane F3 Close - F6 P	Next F10 Men	

- 1. Wählen Sie die Karte 1.
- 2. Betätigen Sie den Aktionschalter CARD TYPE. Es erscheint ein Dialogfenster mit einer Liste der möglichen Analog-Karten.
- 3. Wählen Sie den Kartentyp ADC16.
- 4. Betätigen Sie den Aktionsschalter OK.

Die Karte 1 ist jetzt als 16 Bit ADC definiert. Als nächstes müssen Sie die Anzahl benötigter Kanäle festlegen (max. 14).

5. Betätigen Sie den Aktionsschalter NUMBER OF CHANNELS und geben Sie z.B. 8 ein, d.h. im späteren Betrieb werden vom Master nur die Kanäle 0..7 bearbeitet.

Der Aktionsschalter CHANNEL CONFIG dient dazu, die einzelnen Kanäle zu spezifizieren. Näheres finden Sie im nächsten Kapitel.

2.2. Kanal

Die grosse Stärke dieser Karte liegt in der Tatsache, dass jeder Kanal einzeln softwaremässig den eigenen Bedürfnissen angepasst werden kann. Betätigen Sie den Aktionsschalter CHANNEL CONFIG. Folgendes Bild erscheint auf Ihrem Display :

Channel 0	010.00 U 🧯	Input ange	
Channel 1	010.00 U 🛛		
Channel Z	010.00 U	Channel ype	
Channel 3	010.00 U		
Channel 4	010.00 V		
Channel 5	010.00 V	Parameter 1	
Channel 6	010.00 V		
Channel 7	010.00 U	Parameter Z	
Channel 8	010.00 0	D	
Channel 9	0.10.00 0	Parameter 3	
Channel 10	0.10.00 0		
Channel 11	0.10.00 U	Canaal	
Channel 12	0.10.00 0	k Lancel	
Channel 13	010.00 V M		

Das Fenster enthält eine Liste der Eingangsbereiche, der von Ihnen gewählten Anzahl Kanäle und die Aktionsschalter INPUT RANGE, CHANNEL TYPE, PARAMETER 1..3.

Hinweis: Noch nicht definierte Kanäle haben 'by default' den Eingangsbereich 0..10V und den Kanaltyp VOLT.

2.2.1. Eingangsbereich

Bereich	Auflösung bei 16 Bit
010V	0.15 mV
01V	0.015mV
00.1V	0.0015mV
00.02V	0.0003mV
+-10V	0.3mV
+-0.1V	0.03mV
+-0.1V	0.003mV
+-0.02V	0.0006mV

Folgende Eingangsbereiche sind möglich:

Wählen Sie den gewünschten Kanal aus und betätigen Sie den Aktionsschalter INPUT RANGE.

F(I) Cha			
Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 8 Channel 9 Channel 10 Channel 11 Channel 12 Channel 13	0.10.00 U 0.10.00 U	Input Bange 010.00 V 010.00 V 010.00 V 00.10 V 00.00 V 00.0	
-			

Es erscheint ein Dialogfenster mit den 8 möglichen Eingangsbereichen. Wählen Sie den gewünschten aus, betätigen Sie OK und schon ist der Eingangsbereich des entsprechenden Kanals definiert.

2.2.2. Kanaltyp

Neben dem Eingansbereich kann pro Kanal auch noch ein Typ definiert werden. Folgende Möglichkeiten bieten sich hier:

Тур	Beschreibung
Volt	Spannungsmessung
Ampere	Strommessung
Temperatur	Temperaturmessung mit Hilfe eines Thermoelementes
Ausgleichselement	Kompensation bei Temperatur- messungen mit Thermoelem.
temp. geregeltest Ausgleichselement	Kompensation bei Temperatur- messungen mit Thermoelem.
PT100 - Ausgleichselement	Kompensation bei Temperatur- messungen mit Thermoelem.

Wählen Sie den gewünschten Kanal aus und betätigen Sie den Aktionsschalter CHANNEL TYPE.

Channel 0	016.00 U o	Input ange	
Channel 1	010.00 U g		
Channel Z	010.00 U	Channel Type	
Channel 3	010.00 U		
Channel 4	010.00 U	Volt Ok	1
Channel 5	010.00 U	Ampere	۰.
Channel 6	010.00 U	Temperature	
Channel 7	010.00 0	Compensation EL. Cancel	E.
Channel 8	0.10.00 0	controled C. El.	
Channel 9	0. 10.00 U		
Channel 19	0.10.00 0		
Channel 11	0.10.00 U		
Channel 12	0.10.00 0		
Cugunet 12	010.00 V U		

Alt-X Exit F2 Save F3 Load Alt-F3 Close F6 Mext F10 Menu

Es erscheint ein Dialogfenster mit den 6 möglichen Kanaltypen. Wählen Sie den gewünschten, aus, betätigen Sie OK und schon ist der Kanaltyp definiert. Nun müssen Sie nur noch die Parameter 1..3 (falls nötig) setzen.

a) Volt

Wurde dieser Typ gewählt, so sind die Parameter 1..3 nicht von Bedeutung und können somit auch nicht angewählt werden.

b) Ampere

Strommesswiderstände sind zwar auf der Karte nicht vorgesehen, spielt jedoch der Kontaktwiderstand der Stecker keine Rolle, so können externe Messwiderstände direkt an den R-Pins angelötet werden. Bei 200 Ohm können z.B. 0...50mA im 10V-Bereich mit einer Auflösung besser 1uA gemessen werden.

Der Wert dieses Messwiderstandes (nur ganze Ohm im Bereich von 1..255 Ohm) kann unter PARAMETER 1 angegeben werden. Der Master rechnet dann die gemessene Spannung in einen gemessenen Strom um und schreibt das Resultat in mA ins DualportRAM.

c) Temperatur

Folgende Thermoelementtypen können direkt an die EXT-ADC angeschlossen werden:

Тур	Beschreibung	Bereich °C	Bereich mV
Typ R	Platin-13% Rhodium/Platin	-50°C1700°C	-0.220.2mV
Typ S	Platin-10%Rhodium/Platin	-50°C 1700°C	-0.217.9mV
Тур В	Platin-30%Rhodium/Platin	6001700°C	1.812.4mV
Тур Ј	Eisen/Kupfer-Nickel	-200°C1200°C	-7.969.5mV
Typ L	Eisen/Kupfer-Nickel	-200°C900°C	-8.253.1mV
Тур Т	Kupfer/Kupfer-Nickel	-200°C400°C	-5.620.9mV
Typ U	Kuper/Kupfer-Nickel	-200°C600°C	-5.734.3mV
Тур Е	Nickel-Chrom/Kupfer-Nickel	200°C1000°C	-8.876.4mV
Тур К	Nickel-Chrom/Nickel	-200°C1300°C	-5.952.4mV

Hinweis: Für eine optimale Wahl zwischen Eingangsbereich und Thermoelement sind Sie selbst verantwortlich.

Channel 0	0 0.02 U 🌾	Input lange	
Channel 1	010.00 V 🔅		
Channel 2	010.00 V	-[1] Thermoelementty	
Channel 3	010.00 V		
Channel 4	010.00 V	PtRh-Pt , Tup R	0.5
Channel 5	010.00 V	PtRh-Pt , Tup S 🗍	
 Channel 6	010.00 V	PtRh-PtRh, Tup B	
Channel 7	010.00 V	Fe-CuNi , Typ J	Cancel
Channel 8	010.00 U	Fe-CuNi , Tup L	
Channel 9	010.00 U	Cu-CuNi , Tup T	
Channel 10	010.00 U	Cu-CuNi , Tup U	
Channel 11	010.00 U	NiCr-CuNi, Tup E	
Channel 12	8. 18.99 U		
Channel 13	0.,10.00 U		
011011102 20			CONSISTER ON
Channel 12 Channel 13	010.00 V 010.00 V		13307

Der Thermoelementtyp wird unter PARAMETER 1 gewählt.

Die Temperatur der Anschlussklemme kann mittels Temperaturgeber (z.B. LM35) gemessen werden. Dieser Sensor wird an einem beliebigen Analog-Kanal angeschlossen, dessen Nummer (0..127) unter PARAMETER 2 angegeben wird.

Channel 0	88.82 U	Input ange	
Channel 1	010.00 0		
Channel Z	010.00 U	100	
Channel 3	010.00 U		
Channel 4	010.00 V	Channelnumber of the a	cording_
Channel 5	010.00 V	Coup. Element : 13	1
Channel 6	010.00 V		
Channel 7	010.00 V	Can Can	cel 🔳
Channel 8	010.00 U		_
Channel 9	010.00 U		
Channel 10	010.00 U		1000000000
Channel 11	010.00 U		
Channel 12	919.99 V	k Cancel	
Channel 13	010.00 V		

Dieses Ausgleichselement muss nicht auf der selben ADC-Karte sein. Es kann sogar auf eine fiktive ADC-Karte gelegt werden, wenn es sich um ein Temperatur geregeltes Ausgleichselement handelt. Wird kein solches benötigt, so kann irgend eine Kanalnummer angegeben werden, die nicht als Ausgleichselement definiert ist.

Die vom Master errechnete Temperatur wird in °C im Festkommaformat ins DualportRAM geschrieben.

d) Ausgleichselement

Ist an ein Kanal ein Ausgleichselement angeschlossen, so muss mit den 3 Parametern der Typ des Temperatursensors und der Thermoelementtyp angegeben werden.

Der Thermoelementtyp wird unter PARAMETER 1 angegeben (siehe c) Temperatur).

Für den Typ des Temperatursensors werden die PARAMETER 2 und 3 benötigt.

Channel 0	0 0.02 V	Input ange		
Channel 1	010.00 V			
Channel Z	010.00 V		ter 0°C	
Channel 3	010.00 V			E
Channel 4	010.00 V	0.00 V	12	E
Channel 5	010.00 V	2.73 V 🛛		6
Channel 6	010.00 V			E
Channel 7	010.00 V	Ū.	Cancel	
Channel 8	010.00 V			6
Channel 9	010.00 V	-		E
Channel 10	010.00 V			
Channel 11	010.00 V			
Channel 12	010.00 V	lk (Cancel	
Channel 13	<u>916.06 U t</u>			
ii .				

Mit PARAMETER 2 wird die Spannung, die der Temperatursensor bei 0°C abgibt, gewählt.

Mit PARAMETER 3 muss der Verstärkungsfaktor (Änderung in mV pro °C) des Sensors festgelegt werden.

Beispiel : LM35 : 0°C -> 0V, 10mV/°C

Hinweis : Im Messwertdoppelwort dieses Kanals erscheint die Temperatur in °C des Ausgleichselementes. Diese Tatsache ermöglicht es, 'low cost' Temperaturmessungen durchzuführen eben z.B. mit einem LM35-Sensor.

= File I	Digital Analog	Control Windo	W Antonio da castal da	13:68:5
	Chan			
	Channel 0	0 0.02 V	Input ange	
	Channel 1	010.00 U		
	Channel 2	010.00 U	-[-] Scale Factor	-
	Channel 3	010.00 U		
	Channel 4	010.00 V	10 mU/°C 5 − 0b	
	Channel 5	010.00 U	100 mU/°C 🗍 💻	
	Channel 6	010.00 V	1	
	Channel 7	010.00 U	Cance	1
	Channel 8	010.00 U		
	Channel 9	010.00 U		
	Channel 10	010.00 U	-	1000008
	Channel 11	010.00 V		
	Channel 12	919.99 V 🗍	k Cancel	
	Channel 13	916.06 U		
	ġ			
	BORGEORGEOR			
		Notian	e	
It-X Exit	FZ Save F3 L	oad Alt-Y3 Clos	e Fb Next F10 Menu	

e) Geregeltes Ausgleichselement

Hat man ein Temperatur geregeltes Ausgleichselement, so muss ein Kanal dafür 'geopfert' werden, obwohl physikalisch an diesem Kanal nichts angeschlossen ist. Das ist aber weiter nicht tragisch, da ja auch Kanäle dafür verwendet werden können, die physikalisch gar nicht existieren. Der Thermoelementtyp wird wie beim normalen Ausgleichselement unter PARAMETER 1 angegeben. Die Temperatur des Ausgleichselementes (nur ganze °C im Bereich von 0..255°C) kann unter PARAMETER 2 festgelegt werden.

r-f-) Char			
Channel 0	0 0.02 U	Input ange	
Channel 1	010.00 U		
Channel Z	010.00 V	p.0.1	
Channel 3	010.00 V		
Channel 4	010.00 V	Temperature of the Compensation	
Channel 5	010.00 V	Element (°C) : 20	
Channel 6	010.00 V		
Channel 7	010.00 V	Cancel	
Channel 8	010.00 V		
Channel 9	010.00 V		
Channel 10	010.00 U	100100300	
Channel 11	010.00 V		113
Channel 12	010.00 V 🗓	k Cancel	
Channel 13	916.96 U t		
10 10			
HORMOROROW			

Alt-X Exit F2 Save F3 Load Alt-F3 Close F6 Mext F10 Menu

f) PT100 - Ausgleichselement

Es kann auch ein PT100-Fühler zur Temperaturmessung der Ausgleichstelle verwendet werden. In diesem Fall muss unter PARAME-TER 2 die Kanalnummer (0..127) des entsprechenden Sensors angegeben werden.

3. ADC - Werte anzeigen

Starten Sie SHOW.EXE und wählen Sie den Menüpunkt ANALOG. Es erscheint ein weiteres Menü mit den aktuell am Feldbus hängenden Analog-Karten. Wählen Sie die gewünschte Karte (in unserem Fall eine ADC) aus und schon werden die gemessenen Werte (je nach Kanalkonfiguration in V, mA, °C) dieser Karte übersichtlich in einem Fenster dargestellt.

Ξ	Inputs	Outputs	Counters	Analog	Control	Window	Options	17:57:52
			Channel 9		.00 0 : 1	6.8553		
			Unannel 1			1.082.52		
						166.522	10U 1000	
			Channel 3			398.58		
			Channel 4		.00 U :	6.8551		
			Channel 5			1.80237	U 888	
						100.263	mU Sili	
			Channel 7			28.8677	- NU 1933	
			Channel 8			24.67		
						8.8	mA SSS	
			Channel 18			1.5181	U	
			Channel 11			-1.5854	Ū 888	
			Channel 12			1.5898	- Ŭ 188	
						-1.5854	1 8 B	
						110001		
Alt	-X Exit	Alt-F3 0	lose Pb N	ext F10	nenu			

In der untersten Zeile steht der Zustand der Karte. Folgende Möglichkeiten gibt es hier :

Card ok.

Die ADC-Karte meldet sich korrekt.

Card doesn't answer .

Es meldet sich keine Analog-Karte unter dieser Nummer.

Wrong card type.

Es meldet sich zwar eine Analog-Karte unter dieser Nummer, es handelt sich dabei aber nicht um eine ADC-Karte.

Wrong card version.

Es meldet sich zwar eine ADC-Karte unter dieser Nummer, diese hat aber eine ältere Versionsnummer als die Systemsoftware und ist somit nicht korrekt ansprechbar.

Card error.

Die ADC-Karte hat einen Defekt und muss repariert werden.

4. Programmiertips

Folgende Bereiche des DualportRAM's sind für die EXT-ADC von Bedeutung:

Adr	esse			
von	bis	Grösse	Name	Beschreibung
100	2FF	128* DOUBLE	AINOUT	 Analoge Ein- und Ausgänge 0127. Jeder der möglichen 8 Analog-Karten werden 16 Kanäle (16 Doppelworte zugewiesen (Karte 3 erhält z.B. die Kanäle 4863). Die 16 Kanäle der ADC sind folgendermassen aufgeteilt: 013: Messwerte der 14 ADC-Eingänge im Festkommaformat, d.h. im zur Verfügung stehenden Doppelwort stehen im oberen Wort die ganzen mV, mA oder °C und im unteren das Kleingemüse (1/65536 stel mV, mA, °C). 14: wird nicht gebraucht 15: Bit 0.13: definiert die zu messenden Kanäle: Bit* nicht gesetzt Kanal * wird gemessen.
300	4FF	128* DOUBLE	ANCDEF	Analoge Kanaldefinitionen 0127,. Jeder der 8 möglichen Analog-Karten werden 16 Doppelworte zur genaueren Kanaldefinition zugewiesen. Bei der ADC sieht so ein Doppelwort folgendermassen aus: Byte 0: Bit 03 = Eingangsbereichnummer Bit 47 = Kanaltypnummer Byte 13: Parameter 13
700		BYTE	NACARDS	Anzahl Analogkarten. Dieser Parameter wird nur bei der Initialisierung berücksichtigt und kann nicht nachträglich geändert werden.
720	75F	8*2* DOUBLE	ACONFIG C_TYPE CERROR NROCHAN	Spezifikaton der 8 möglichen Analog-Karten (je 2 Doppelworte). 1. Doppelwort: Byte 0 = 1 (ADC) Byte 1 = Kartenfehler Byte 2 = Anzahl Kanäle. Mit diesem Byte wird bestimmt, wieviele Kanäle der Karte bearbeitet werden sollen. Steht hier z.B. eine 3, werden nur die Kanäle 0,1,2 bedient.

Adr von	esse bis	Grösse	Name	Beschreibung
			ACTCHAN	Mit diesem Byte kann der ADC auch dazu veranlasst werden, nur noch einen Kanal zu messen, indem man das Bit 7 setzt. z. B. nur noch Kanal 3 messen: -> NROCHAN = 0 x 83 3 Kanäle messen: -> NROCHAN = 0 x 03 Byte 3 = Aktueller Kanal. Hier wird angege- ben, welcher Kanal als letzter gerade bear- beitet wurde und kann zu Synchronisations- zwecken benutzt werden. 2. Doppelwort: reserviert für zukünftige Anwendungen

Eingangsbereichsnummer:

Nummer	Bereich
0	0 10V
1	0 1V
2	0 0.1V
3	0 0.02V
4	+-10V
5	+-0.1V
6	+-0.1V
7	+-0.02V

Kanaltypnummern:

Nummer	Тур
0	Volt
1	Ampere
2	Temperatur
3	Ausgleichselement
4	Temp. geregeltes Ausgleichselement
5	PT100 - Ausgleichselement

Zusammenhang Kanaltyp <-> Parameter 1..3:

			Kanaltyp								
		0	1	2	3	4	5				
P a	1	-	Wider- standswert 1255Ohm	Thermoele- menttyp	Thermoele- menttyp	Thermoele- menttyp	Thermoele- menttyp				
r a m e t	2	-	-	Kanalnum- mer des da- zugehören- den Aus- gleichsel	0°C Spannung des Tempe- ratursen- sors	Temperatur des Aus- gleichs- elementes 0255°C	Nr. des PT100- Kanales				
e r	3	-	-	-	Skalierungs Faktor des Temperatur- sensors	-	-				

Nr.	Тур	Beschreibung	Bereich °C	Bereich mV
0	Typ R	Platin-13% Rhodium/Platin	-50°C1700°C	-0.220.2mV
1	Typ S	Platin-10%Rhodium/Platin	-50°C 1700°C	-0.217.9mV
2	Тур В	Platin-30%Rhodium/Platin	6001700°C	1.812.4mV
3	Тур Ј	Eisen/Kupfer-Nickel	-200°C1200°C	-7.969.5mV
4	Typ L	Eisen/Kupfer-Nickel	-200°C900°C	-8.253.1mV
5	Тур Т	Kupfer/Kupfer-Nickel	-200°C400°C	-5.620.9mV
6	Typ U	Kuper/Kupfer-Nickel	-200°C600°C	-5.734.3mV
7	Тур Е	Nickel-Chrom/Kupfer-Nickel	200°C1000°C	-8.876.4mV
8	Тур К	Nickel-Chrom/Nickel	-200°C1300°C	-5.952.4mV

Thermoelementtypen:

Hier noch ein paar zusätzliche Tips :

- um die Anlagensicherheit zu erhöhen, sollte mit ACCONFIG. CERROR periodisch sichergestellt werden, dass sich die ADC-Karte noch korrekt auf dem Bus meldet.
- sind sie mit einer Auflösung von ganzen mV, mA oder °C zufrieden, so müssen Sie nur das obere Wort von AINOUT betrachten
- wollen Sie hingegen die volle Auflösung nutzen, müssen Sie zuerst den DualPortRAM-Wert in eine Realzahl umwandeln:

Beispiel in C : DOUBLE value value = aptr->ainout[kanal] / 65536;

Beispiel in Pascal value : REAL; value := aptr^.ainout[kanal] / 65536; - die Konvertierungszeit pro Kanal beträgt:

bei 16 Bit	100 ms	(20 ms + 80 ms)
bei 15 Bit	60 ms	(20 ms + 40 ms)
bei 14 Bit	40 ms	(20 ms + 20 ms)

d.h. bei Belegung aller Kanäle erreicht man eine Refreshrate von:

16*	100 ms	=	1.6 se	ec bei 16 Bit
16*	60 ms	=	960 m	s bei 15 Bit
16*	40 ms	=	640 m	s bei 14 Bit

Werden jedoch z.B. nur 4 Kanäle benötigt, so ergibt dies:

(4+2)*	100 ms	=	600 ms	bei 16 Bit
(4+2)*	60 ms	=	360 ms	bei 15 Bit
(4+2)*	40 ms	=	240 ms	bei 14 Bit

- ist es aus irgend einem Grund notwendig, sich mit dem Master zu synchronisieren, so kann mit Hilfe von ACCONFIG.ACTCHAN festgestellt werden, welcher Kanal der Master gerade bearbeitet hat.
- da der Kanaleingangsbereich während des Betriebs geändert werden kann, ist ein Multirangebetrieb softwaremässig möglich.

Beispiele in C und Pascal finden Sie auf der mitgelieferten Diskette im Direktory BEISPIELE.

5. Technische Daten

5.2. Steckerbelegung

	d				b				Z		
2 4		+ -	V V	8 8		+ -	R R	8 8		Schirm Schirm	
6 8		+ -	V V	9 9		+ -	R R	9 9		Schirm Schirm	
10 12	1	+ -	V V	10 10		+ -	R R	10 10		Schirm Schirm	
14 16	I I	+ -	V V	11 11		+ -	R R	11 11		Schirm Schirm	
18 20	I I	+ -	V V	12 12		+ -	R R	12 12		Schirm -15V	
22 24		+ -	V V	13 13		+ -	R R	13 13		+15V Schirm	
26 28		GND GND		0 0	Serial Out+ Serial Out-			Schirm Schirm			
30 32		+ +	24 24	V V	l	Serial Inp+ Serial Inp -				Schirm Schirm	

Stecker 1 stehend DIN 41612, Typ F-48 2.8mm Steckzungen

		d			b				Z	
2 4	I	ERDE Schirm		+ -	R R	0 0		+ -	V V	0 0
6 8		Schirm Schirm		+ -	R R	1 1	I I	+ -	V V	1 1
10 12		Schirm Schirm		+ -	R R	2 2	I I	+ -	V V	2 2
14 16		Schirm Schirm		+ -	R R	3 3	I I	+ -	V V	3 3
18 20		Schirm Schirm	1	+ +	R R	4 4	I I	+ +	V V	4 4
22 24		Schirm Schirm		+ -	R R	5 5	I I	+ -	V V	5 5
26 28		Schirm Schirm		+ -	R R	6 6	I I	+ -	V V	6 6
30 32		Schirm Schirm		+ -	R R	7 7		+ -	V V	7 7

Stecker 2 stehend DIN 41612, Typ F-48 2.8mm Steckzungen

5.2. Anschlussbeispiel

Feldbus-Schirm

Da der Feldbus bei der EXT-ADC Karte voll galvanisch getrennt ist, muss der Schirm vom Feldbus-Kabel immer aufgelegt werden. Beachten Sie auch die Anschluss-Hinweise beim Master.

Karten-Speisung

Für die Kartenspeisung reicht ein 3-Phasen-Gleichrichter ohne Elko aus. Um Störungen zu vermeiden, wird jedoch ein Elko von 4700 ... 10000 uF empfohlen. Die EXT-ADC-Karten dürfen daher an die gleiche 24V Speisung wie die EXT-16Pi angeschlossen werden.

Schirme und Erdung

Um Erdschlaufen zu vermeiden, sollten die Schirme nur einseitig aufgelegt werden. Sind die Thermoelemente z.B am Montageort geerdet, so dürfen sie an der Karte nicht mehr angeschlossen werden. Die EXT-ADC-Karte sollte nur an einem Punkt (Stecker 2, Pin 2d) geerdet werden.

Beachte : Die Eingänge sollten immer einen gewissen Bezug zum Karten-GND (Schirm-Pins) haben. Werden floatende Spannungsquellen (z.B. Thermoelemente) angeschlossen, so ist z.B. das -V in bzw. das -R-Pin mit einem Schirm-Pin zu brücken. Messen Sie keine offenen Eingänge (Anzahl Kanäle begrenzen) oder legen Sie die freien Eingänge auf GND.

5.3. Spezifikationen

Speisung

+18..36V, ____mA max

Lagertemperatur -20..+80 Grad Celsius

Betriebstemperatur 0..+70 Grad Celsius

Mess-Bereiche

Pro Kanal softwaremässig einstellbar: 10V, 1V, 0.1V, 20mV alle Bereiche unipolar oder bipolar. Autorange ist softwaremässig realisierbar.

Auflösung

1/60'000 vom Messbereich

Genauigkeit

In allen Bereichen besser 0.02% vom Messbereich bei 25 Grad Celsius Umgebungstemperatur.

Drift

30ppm/Grad Änderung der Umgeb.Temp.

Referenz

Auf der Karte ist eine hochpräzise Referenz für alle Messbereiche eingebaut, deren Eigenschaften zusätzlich ausgemessen und im EEPROM abgelegt werden. Im Betrieb misst sie der IO-Master automatisch mit und korrigiert damit den Offset und Gain-Drift. Auf der Karte kann nichts abgeglichen oder verstellt werden!

Aufwärmzeit

Obwohl Offset und Gain dauernd gemessen und Ausgeglichen werden, ist mit einer Aufwärmzeit von ca.15 Minuten zu rechnen, bis die optimale Stabilität der Messwerte erreicht ist.

Anschluss

Differenzial-Eingänge über abgeschirmte Leitungen.

Erdung

Da die Karte vom Feldbus-Kabel und von der Speisung galvanisch getrennt ist, kann das Pin 2d bei Bedarf geerdet werden, ohne dass Erdschlaufen entstehen (verhindert floaten der Karte und der Fühler).