ISM-6.0 INDEL BETRIEBSSYSTEM

INDEL Operating System

|ISM-6.0
Version: PC

Reference Manual

970708 F. Baschung INDEL AG, CH-8332 Russikon

ISM-6.0

ISM-6.0 Contents

Contents

INDEL AG 19.06.97 1

Contents ISM-6.0

CONTENTS 1
INTRODUCTION 7
[T T - PSRRI 8
EXAMPLE 11
(=) =T | SRS OPTUPON 12

TOOLS 21
INDELLINI. ...ttt ettt e e e e e e e sttt et et e e e e e e e sa s as bbbt sttt et eaaeeeeeaananbnbbeb e e e et eeaeeeeenasnnnnnnne 22
Y] RSOOSR PSPPSRI 27
TIRAINS .ttt ettt bt bbb e b e e At e e e R e R R R e R £ SR £ R £ oA R oA R e b e ke R e R £ eR e b e e R e e e e e nRe b nbeereenean 28
[T T TSRS P TP P PP PRPRPROON 29
CONFIG ...ttt ettt b e bbbt e st e s e s et et e e e e bt e Ee e b e e Rt e st e R e en s et e b e ebeeb e ebeeseeneenteaeneenbesbestenrenn 30
RAM-ORGANIZATION 31
PC-MASTER RAM.......eittitiiiiiietest sttt ettt ettt stttk b e bt b e et e e e b e bt e bt e bt eh £ e bt e bt e b e e e et e e e ebeabeabeaneenean 32
INFO-MASTER RAM ..ottt ettt bbbt s b s b s bt e bbbt se e e e et e ebe b ane e s 33
REGISTER

L] S Gl S (=] SRR PPPRP
Task-Control Register
ASCIFCONLIOI REGISTE ...t re e r e e nr e reen e
ADDRESSING MODES 39
FOrmMat Of COMIMEANGSciuviiiiitiiiti ettt b et b ettt b et san e b e nasesbeenneenbeenbeenne 40
AdAreSSING MOOESeiiiiie ittt ettt ettt e b et e s hb e e e be e e ket e e bb e e sabeeebeeeabbeesnbeesbaeensneas 41
IMIMEAIALE ...t r et n e s e s r e e e 42
FLOATING POINT IMMEAIALE.ccuvieitiieitii ettt ettt e sttt et e et e st e e esbeeebeeastaaessbeeebeeassaeassseesbeeenseeensaees 44
o [0 =] TP TSP P PP UPTPRSURPPPP 45
Address With RegISTEr-0ffSEL........oi et 46
Indirect (Address W ith RegIStEr-Off SEL)........coiuiiiiiieiie e e 47
Pointer indexedcccocevvevienienieneeenn

Indirect (Pointer indexed).

RegiSter.......ccccevviieiieeiieeiieee .
Register indeXed (With OFfSEL)eiiiiiiieie e e 51
Register indexed w ith AUtO-INCrement/DECTEMENL...........cciiiiiiiieieiesese e 52
Register indexed W ith RegIStEr Off SBL......ccuiiiiiieiii e 53
AASSCIFBUFFEI .ttt bbb bbbt bt bt h bt e e bt bt bt e b e bt bt e n e e e et b b beene s 54

2 19.06.97 INDEL AG

ISM-6.0 Contents

[N O B = = LY PP SSPPPPPIOS 55
(@101 = B 1 I =7 T PR P RSP 56
L I T = = L SRS 57
GLOBAL ADDRESS - COMMANDS 58
GEL GlODAI AGAIESS ...eeciiieteeie ettt e e et et e e e e etba e e e e e ebbaeeeesbbeeeesabeeeesebsseeseassraseesanteneesssanes 59
GEL GIODAI POINLETeeiieiiiee ettt et e e et e e e ettt e e e e e eate e e e e satbe e e e s nbaseesebsseeeeassraeeeeanraneeesnsnnes 60
[T €] lo] o LD T o] o] (o (PR TSTRU PRI 61
TASK-CONTROL-COMMANDS 62
EXeQute.......ccoevviennnn. ..63

Get Program NumbeR.... ..64
Johann Self KIl.............. .65
JOhannKIl.............. .66
N [ol g T T ST N =T o S SRR PPPPP 67
N[0 g - oL o A 2o o PSR PTROURPO 68
DELAY ettt ettt ettt bbb bk R h e £ R R e A e R e R e R e R e oA e oA R e e b e AR e e Re e R £ eh e R e e Rt e e et e et R b ereenean 69
JUMP-COMMANDS 70
BRANCH AW BYS ...ttt bbb bbbt 71
Branch t0 SUD-ROULINE.ooiiiiiiie ettt et e b e e ba e e s nb e e snbeeebeeeanaeas 72
JUMP..... ettt ettt bt bbb bRt R R R R R R £ R £ e R £ oA R oA R b e R e R e R e Rt e b e e h e e e e R b b beene s 73
Jump to Subroutine74
Jump indirect Address-Table...............c...... .75

Jump to Subroutine indirect address-Table ..

Return To Main program..........ccccecceeevveennenn. e
Jump EXternal.........cccooveenieennenn. .78
load Registers and jump EXIEINALcooiiiiiiiiiiieii e s 79
Call EXIEINAI PrOCEAUIEoouviieieiieeiie ettt sttt e bt e sttt e et e e abae e sbeeeanbeeebbeesseeessbeeesbeeesneeaanneaans 80
load Registers and Call eXternal PrOCEAUIEoocuiiiiiiiiiie ettt sbe e eee e 81
BIT-COMMANDS 82
Test and BRANCH if DIt = 0...iiiuiiiiiiccie sttt et e e be e e s sae e e beeebaaensaeas 83
Test and BRANCH If DIt = L...ooiiiiie et e e et e e e e e be e e teeenraeas 84
Test and HalT if DIt = 0ooeiieeee e e 86
Testand HalTif bit=1.........ccooviiiiinnnn. .87

Test and HalT if bit =0 and branch if Timeout..

Test and HalT if bit = 1 and branch if Timeout.. ..89
St BIT90
Clear BIT..... .91
LNV Z=T =] I PP PSPPPPPIRS 92
017 =] I I EPPURRR S 93
YL [N Y2 o = PSS 94
T o B TSy AR) PSRN 95
SEEBIL RANGE ...ttt bbb 96
(o T To I 10z 1y o [TSP P UR 97

INDEL AG 19.06.97 3

Contents ISM-6.0

MOVE-COMMANDS 99
MOV ..tttk h kR ke bR Rt Rt a R Rt R e R e Rt b e bt e bt r s 100
(22, =Ty o[P P PP P PP OUPPPRPPN 101
[AT fo =3 q (=10 To (=T IO P OO P PO UP PP PPPOPPRON 102
MOVE SIGNUM EXLENUET.oviiiitiitiitiiti et sb et esnee 103
VIOV BYTE ...ttt ettt e ettt e e sttt e e s b et e e e ekt b e e e e aa st e e e e e nb e e e e e eabbee e e e nneeeeeenreeaeeas 104
(D8] 1o F TP PRPT PPN 105
LOGIC-COMMANDS 107
Y 5 PO PPPPPPPPRN 108
OR...oooverrenn.109
eXclusive OR110
(0017 /o] (=700 = o ST TP PR O VSPRPPPRP 111
LOGIC SHIft... ettt h bbbt 112
F N 110100 (o o T PO P TP PTOTRPPPNt 113
L@ I (= PP P PRSPPI 114
ARITHMETIC-COMMANDS 115
F Y BB o) o [P PRSP PPTOTPPPPRIOt 116
10 (=Tl (o] o DTSRRI 117
YOI o] Tot=1 1o o WSO R PP PUPUPPNY 118
D)V (o] o T O SO P PO PP U PPPOPPRON 119
QUCQtient.....120
MODulus..... L2121
REMainder ...122
1O N == o T | O EPPUPTP R SOPPPPNY 123
F N S0 0] (= PSP PR P TOTPPPPROt 124
INEGALE ...ttt ettt ettt ettt h e eh bt e bt bt e bt e R e et E Rt e R bRt nh R Rt bt bt e b ne et nne s 125
CONVERT-COMMANDS 127
[(oo a g To I (ol] (=To =T S OSSP PO PPTR U PPPOPPRON 128
INTEGEN 10 FIOALING. .. c.veieeiieit ittt 129
[S BTt 1007z @ o] AV =T o R U PP PUPUPPOt 130
DECIMAL HEX CONV I ...ttt ettt b et bt e hb e e bt eeabe e e bb e e eabe e e beeeabseeenbeeebeeenbneeanne 131
ADDRESS CAICUIALION ...t ettt et s bttt e s e b e e abeeennne 132
COMPARE- COMMANDS 133
Compare and BRANCH @DSOIULEcoouiiiiiiiiiie ettt st e sate et e neeas 134

Compare and BRanch Signed ...135

Compare and BRanch floating 136
TIME-COMMANDS 137
GEUSEE TIMEottt ettt ettt e e s bt e e s s e e e abe e e e bt e e ah bt e eabe e e shbeeahteeesbeeeabbeesabeeanteeesnbaesnteeanneas 138
PC-INTERFACE-COMMANDS 140
PCCOM. ...ttt bbb b h et b et E ekt E e b e bt e s e st R R AR AR R Rt a et e n e et Rt n et reeneen 141
COM SET DBVICEccutteniiiuie ettt sttt sttt sbe ettt ettt et ea e bt eh e e bt e s b e sb e e st e e bt e bt e b e enteenbesntenntesnnenreenne 143

4 19.06.97 INDEL AG

ISM-6.0 Contents

COM RESEL DBVICE. .. ueeiiitvrieieeiitiet e e ettt e e eettte e e e ettaeeesstbeeeesebaseessabaaeeesabaeeeeasabeesesssbeseesasbaseeseassseeesasres 144
COM TEXE OULPUL......eeee ettt e ettt e e e et e e e e s et e e e e e sbaaeeeesaeeeeeasataeeeesasbaeeesassaseaeeasnseeeaanres 145
COM BIOCK TEXE OULPUL.......eeiiiiiiee et e et s e e e et e e e e s aae e e e e sate e e e e sasbaeeesennnseeeensnneeesnnnnes 146
(00 1Y =4 B] = U SRRSO 147
COMIUMP TEXE INPUL ... 148
COM SELE NG STALUScecuvtieieeiiiie e ettt e e ettt e e e st e e e et e e e e s ebe e e e e sabaaeeeesbteeeeasatseeeessbaeeesassaseaeeasnseeesanres 149
COM GELE INE STALUS ..ecceuvreeeeeiieie e e ettt e e s stte e e e e st e e e e stte e e e s e teseeesataseeesasseeeeeasasseeesssseseesasseseeesssnseeesasnnes 150
INFO MASTER-SLAVE PROTOCOL 152
TO FESEIVE @ CHANNEL ...ttt et e e e e ettt e e e s e bt e e e e e abeeeeesbaeeessasbeeeeeesraeeeens 158
Set a channel free.........159
Write 8/16/32-Bit block..160
ReAd 8/16/32-Bit-BIOCKeeeieiieiee ettt e s e e e e e e e e s e e e et e e e e taa e e e annareeeannaeeeaans 162
INFO_SIO - COMMANDS 163
[N @ S (O PP PPPUUPRNY 164
5] (@ 2T =Y o = SRR 167
5] (@ = 0= o= TSP 168
SIO TEXE OULPUL. ...ttt et e e e e e e e e et et e e e e e eeeaeeeaeseasbatasaseeeeeeeeesessasasnsssbaaerreesaeeenan 169
SIO BIOCK TEXE OUIPUL......ceeiiiiie ettt e et e e e et e e e e e at e e e e saab e e e e sabeeeesenbaeeeeeanneeeeeanreeeas 170
£ (@ 2 1= A [U SRR 171
151 (@ 2 3 17NN 1 PR USR 172
SIO BIOCK TEXE INPUL ... uviiiieiiiie e e ittt sttt e e e ettt e e e et e e e e et e e e setbeeeesebreeaessssbeeesaasbeseesenbaeeeesassreeeeansreeens 173
PSEUDO-COMMANDS 175
INDEX 178
ASCII-SET 184
SPECIAI SIGNS ...ttt 185
R 0NV B @ F- T - T (=] SRRSO 186

INDEL AG 19.06.97 5

Contents ISM-6.0

6 19.06.97 INDEL AG

ISM-6.0 Introduction

Introduction

INDEL AG 04.03.97 7

Introduction

ISM-6.0

History:

System:

ISM-Tasks:

Register:

Commands:

Timer:

General

The INDEL-Operating-System ISMw as created in 1980 to program complex
machines, equipments and process controls. By continually adapting actual
requirements, the Multitasks-Operating-System s efficient and simple in its
handling.

It provides the user w ith 32 tasks in application-oriented programming language.
We implemented practicable commands to make it possible for programming-
laymen, machine engineers and operating electricians to read and to edit the

w orking cycles.

The systemis excellently suitable to program operating sequences, much more
than just w orking up fixed connections (SPS).

The systemitself is completely written in assembler for a CPU of National's
NS32000. The user normally isn’t confronted w iththis item, except he wishes to
implement his ow n critical time functions or interrupts. Often, INDEL AG realises
and implements such custom-built functions as for example controls,
interpretations and so on. Those functions are than available as REX-call-
instructions or as new instructions respectively.

The 32 Tasks are w orked out quasi-parallel. This means that there is w orked up
one command in every Task and after this there is a change to the next Task. In
every w alkthrough, the Assembler-Module "USER-CPY" is w orked out once; there
may be implemented equipment-specific functions, such as for example an
electronic mainshaft.

Each Task has 128 ow n 16-bit registers (R00..R7F) w hich also may be used as
32-bit (R01,R00) or 64-bit (R03,R02,R01,R00) registers. 16 registers (R70..R7F) of
the 128 are reserved for system-functions and are continuously occupied.

The Tasks are programmed in an ow n assembler-like language. The commands
have symmetric addressing modes; this means that there is, for example, only one
“move command” that can move data from anyw here to anyw here.

For each Task, tw o 16-bit timers inside its Task-registers are available: one 10ms-
timer and one second-timer.

04.03.97 INDEL AG

ISM-6.0

Introduction

Flags:

I/sec

All tasks have 256 common flags. These make the coordinating and controlling of
operating sequences possible. By switching on, the flags 0...127 are alw ays
reset. The flags 128...255 are kept in mind, even in case of a voltage breakdow n,
provided there is mounted a CRAM w ith battery.

The system performance ISEC indicates the number of instructions each Task can
w ork out per second (for example, lsec is displayed in the INDEL-Debugger D).
This also allow s to determine the maximum reaction rate.

The follow ing is obvious: the less Tasks are started, the faster they are w orked
out. It therefore seems reasonable to w ork out sequences w hich exclude one
another in the same Task.

INDEL AG

04.03.97 9

Introduction ISM-6.0

10 04.03.97 INDEL AG

ISM-6.0 Example

Example

INDEL AG 04.03.97 11

Example

ISM-6.0

Default

Hardw are: To test the follow ing example, you need a PC-Master (it doesn’t matter w hich
version) with a EXT-IO card.

Inputs: 0 RESET TASK-0
1 START TASK-0
2 STOP TASK-0
4+5 running light-mode 0..3 TASK-2

Outputs: 0 ALARM TASK-0
1 READY TASK-0
2 RUN TASK-0
4.7 flashing light TASK-1
8..15 running light TASK-2

TASK-0: Initialize everything, w orks out the RESET, START and STOP-keys, starts and kills
the Tasks 1+2 and controls the ALARM, READY and RUN-lamps.

TASK-1: Blinks betw een the outputs 4 to 7.

TASK-2: Lets the running light, depending on the mode, run as follow s:
00 left
01 right
10 adds 1
11 subtracts 1

EQUAL: As there doesn't exist a linker for the task-programming, all common assignments
are preferably written in one file (EQUAL). The assembler "MSIO" then generates,
among the listing (EQUAL.LS), also a symbol-file (EQUAL.SY), w hich can be
loaded too w hen the Tasks are assembled. (The EQUAL-file also could be
integrated as include-file in each Task.)

Files: You also can find the follow ing source-files in your PCMASTER-index under
PCMA STER\BEISPIEL\ISM\.

12 04.03.97 INDEL AG

ISM-6.0

Example

.TITLE EQUAL-Fil e for DEMD Tasks

EQUAL

Ckkkkk ko kk ko k ok ok k ok ok k ko kkkkk ok ok kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk k&

* *
P * Gormmon assi gnnent s *
o * for the DBEVD Tasks *
j * *
o * Assenbl e: MBl / O BEQUAL ; generates EQUAL.LS and . SL *

B T T T AR S a T T

; Rev. 1.0 920515-FB basic version

INDEL AG

skkkkkkokkkkkkkk TGk Start - AQCr @SSES k% %k ok ks k ok k ok ok k ok ook ok ok ok ok ok ok ok ook ok ok ok ok ok ok ok ok ok kK ok ok ok ok

.Lac

TASK O:
TASK 1:
TASK 2:

. BLKW
. BLKW
. BLKW

08000
0200
0100
0100

Programarea start

TASK-0, 0200 WIRD si ze
TAK-0, 0100 WIRD si ze
TASK-0, 0100 WRD si ze

skkkkkkkkkkkkkk Lhe nar @ AQCr @SSES ** kk ko k ok ko ok ok ok ook k ok ook ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok kK ok ok ok ok

HVDPR
HVADC
HVPCS:
HVPR

(B
(B
(B
(B

0160000
0080
0280
0400

; {DPR
; {DPR
; {DPR

DUAL- PCRT RAM

ADG card O

PCH -card 0

free transfer-RAMon the PJ AT

Rk kR kokkkkkokkk (DN POI N @F S * %% %k kk sk ok ok ok ok ok ok ok ook ok ok ook ok

DPR
PCR
ADC
PCB:

(B
(B
(B
(B

1

2
3
4

Poi -1 points at DUAL- PCRT RAM
Poi -2 points at PG RAM

Poi -3 points at ADGcard O
Poi -4 points at PGscard O

s kkok ok ko k ok ko DG RANV] LOAQ * %k ko k ok ok ok ok ok ok ok ok ok ook ok

.Lac

STAT:
S ALARM
S READY
S RN

VEERT_1:
VERT_2:

| _RESET:
|_START:
|_STceP

| _MIE

. BLKW

0

1
1
2
3

=

0
1
2

; {PCR

;15

STATUS on PO AT

1=AAM
2 = ALARM
3 = ALARM

16-BI T transfer
32-BIT transfer

JERERERERRERERE | LG FEFERRE R RRE AR R I AR ERE IR E R FERR IR ERRE RIS RS ER

RESET- key

;. START-key
; STCP -key

running light node 0..3

INDEL AG

04.03.97

13

Example

ISM-6.0

JRERRRR Rk QE UL S KRR R KRR Rk kR R kR Rk

0 ALARV
Q READY:
ORN

QO BLKO:
QO BLKI:
O BLK2:
QO BLK3:

O LALF:

BEBB BB

B

0
1
2

15

; ALARMI anp

READY- | anp
RN | anp

flashing light O
flashing light 1
flashing light 2
flashing light 3

running light 0..7

shkkkkkkkkkkkkk [QS FHFRFH KRR AR KRR KRR AR KRR KRR KRk

F RN

(B

0

RIN-fl ag

<k kR kKKK R T
) EQUAL THE END

14

04.03.97

INDEL AG

ISM-6.0 Example
TASKO

.TITLE **. Deno Task 0 -**

. SUBTI TLE Reset, Start, Stop

B T R R R R ST T T

o * Deno- Task 0 *
P * Reset, Sart, Sop *
-k *
* Assenbl e: MB TASKO EQUAL ; Generates TASKO.LS and . HX *
; Rev. 1.0 920515-FB Basic Version INDEL AG
R Local asSi gNMeNts ---------------mommm oo
.LCC TASK 0 ; TAK Sart Address
™N_1 B R1O ; Task-Nunber of Task-1
™w_ 2. .BEQU R12 ; Task-Nunber of Task-2

Basi C-i Niti @l | Zat i QN * %% ko ok ook ok ok ko ok ok ok ook ok ok ook ok ok ok ook ok ok ook ok ok ok ok ok ok ok ok

I oad cormon pointers for all Tasks ---------------------ocommmnoo

INT: MOD HWDPR 2*CPR 0} ; DUALPCRT RAM
ADDR HWADG DPR}, 2* AD 0} ; ADG BASE
ADDR HWPCS{ OPR}, 2* PCS{ 0} ; PC5-BASE
ADDR HWPOR DPR}, 2* PCR(0} ; PO AT RAM BASE
R Del ete the DUALPCRT RAM —--------mmmmmm e
MOV 0, 0400{ PCR} ; Delete first PGRAMcel |
DU 0400{ PCR}, 07FC, 1{ PCR} ; Delete conpl ete PG RAM
;************** th for FEE"’***
WRESET: B T O ALARVI CB ; ALARMI| anp on
MOV S ALARM STAT{ PCR} ; STATUS = ALARMto PO AT
THIO | _RESET, IB ; Vit until RESET-key is pressed
AT O ALARV (B ; ALARMI anp of f
THIL | _RESET, IB ; Wit until RESET-key is rel eased
T Sart Task 1 and 2 -----------mmmmmmm i
BEXQLlL BQ TAK 1, TN _1,BXQ1 ; Sart TAK 1
BEXQ2 BXQ TAK 2, TN _2,BEXQ 2 ; Sart TAK 2
;************** Wit for ST/ Khkkkkkkkkhhkhhhhhhkhhhhhhkkkkhhhhhkkkkhhhkkkkkkkkk k¥
READY: SBIT O READY, (B ; READY-1anp on
MOV S READY, STA{ PCR ; STATUS = READY to PQ AT
W START: TBRL | _RESET, | B, T_RESET ; RESET-key operated ?
TBRO | _START, | B, WSTART ; START-key operated ?
INDEL AG 04.03.97 15

Example

ISM-6.0

Ckkkkkkkkkkkkkok
’

BLI NK

T_STeP.

Ckkkkkkkkkkkkkok
’

BT
MOV

IBIT
MOV

> TBRL

TBRL
BR
BRA

AT
aT
BRA

T RESET: GBI T

AT
aT
BT
MOV

JonB
JoB

THI1
DELAY
aT
BRA

START- key operat ed
O READY, (B ;
ORN B ;
| _START, | B ;

F_RIN FB ;
S RN STAT{ PCR :

START-1 anp on
Wit until START-key is rel eased

RUN- FLAG on
STATUS = RN to PO AT

Hash with RINI anp UNET T STOP * % ks koo ok sk ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

ORN B ;
50, I M :

|_STCP, 1B, T_STCP ;
| _RESET, | B, T_RESET ;

Fash with RN anp
Load TIMw th 500ns

STCP- key oper at ed?
RESET-key oper at ed?

TIM <>, 0, WSTCP ; TMR=0

BLI NK

STCP- key oper at ed

ORN B ; RINHlanp of f

F RN FB ; RUN-FLAG of f
READY ; Are we ready again

RESET- key OpErated *## % skt skhshbdkkb bk ko kb ko bk bk bk kb b

F RN B ;
ORN B ;
O READY, (B ;
O ALARVI CB ;
S ALARM STA{ PCR ;
™N_1 ;
™N_2 ;

| _RESET, I B ;
100 ;
O ALARV (B ;
BEXQ1 ;

RUN FLAG of f

RNl anp of f

READY-| anp of f
ALARM | anp on
STATUS = ALARMto PO AT
Task-1 abort

Task-2 abort

RESET- key still operated?
Wit 1 second!
ALARM | anp on
Restart tasks

<k kR kK KAk Rk ko kR kKRR ok kR kR R ok kR Rk kR
) TASK-0 THE END

16

04.03.97

INDEL AG

ISM-6.0 Example

TASK1

.TITLE **. Deno Task 1 -**
. SUBTI TLE F ashi ng

B T T T ST T

o * Deno- Task 1 *
i * flash with Qut BLKO..3 *
-k *

Ckkkkk ko kkkkkkk ok k ok ok k ok ok kkk ok ok ok kkkkkkkkkokkkkkkkkkkkkkkkkkkkokkkkkkkkkk k&
’

* Assenbl e: MB TASKL BEQUAL ; Generates TAKI. LS and . HX *

Ckkkkk ko kkkkkkk ok k ok ok k ok ok k ok ko kkkkkkkkk ok kkkkkkkkkkkkkkkkkkkkkkkk k&
’

; Rev. 1.0 920515-FB Basic Version INDEL AG

— - —Local assignments ————-----------omooiiii—————-
.LCC TASK 1 ; TAK Sart Address

R LTt Al | AT R kR ko ko k ko ko ko ok ko ok ko ko ok ok ok
; Basi c-initialization

INT: MOV ABCRT, ABA ; Junp on ABCRT if JOAB
BT O BLKO, B ; BLK-lanp O on
BT OBLKR, B ; BLK-lanp 2 on

;************** RN/ S‘I’ Kk hhkKk Ak kAR hkhh kA hkhhhkkhkhh Ak hhhkkhkhhkkkhhhkhkhkhkhhrhhkhkrkkhkhkx
WRN THTO F RNFB ; Vit until RN

IBT O BLKO, B ; Invert all BLK-outputs

IBT OBKIL,®B

IBT QBLK2, (B

IBT OBK3 @B

DHAY 20 ; Wit 20ns

BRA WRN
;************** Ki || Task ****sskaskthshkhkk kA kA A kK AR ARARARKAKAK AR KA KRKAK AR KR KKK
ABCRT: SBR QBLKO, (B 4,0 ; Hashing light off

JK ; KILL this Task

<k kR kK KAk L L T i
) TAK-1 THE BEND

INDEL AG 04.03.97 17

Example ISM-6.0

TASK2

.TITLE **. Deno Task 2 -**

. SUBTI TLE runni ng |ight

LRk ok ok ok kK k ok ko ko ko ko kR ko ko kR ko ko ko k Rk ko
-k *
P * Deno- Task 2 *
* running light with Qut LAF 0..7 *
% *
K o o e o e *
P * Assenbl e: M TASK2 EQUAL ; Generates TASK2. LS and . HX *
KRR KRR A A AR KA A AR A A AR A A AR Ak kA Ak kA Ak hhk Ak ko hkhkkhkhhhkkhkhhhkhkhhhkhhkhhhkkkhkhhkkkhkhkkhkk
; Rev. 1.0 920515-FB Basic \ersion | NDEL AG

——— - —Llocal assignnents ——————— - - - - oo --moao o

.L&C TAK 2 ; TAK Sart address
MDE . EQ R0 ; MIEO..3
LICH: B R12 ; Running light register

JRIFERAXFIKAXFKE BAG] G- N L] @l [ZALT QN FEXFEEAKE AKX A KKK A KKK A,

INT: MOV ABCRT, ABA ; Junp on ABCRT if JOAB
MOV 0101, LI CHT ; 2*8-Bit to 16-Bit register
SBR O LALF, @B, 8, LI CHr ; Set 8 outputs fromQ LAF
;************** RN/ STt Kkkkhkhkhkhkhkhkkhkkhhhhkkk kA hkhhhhkk Ak khhhhkkkkkkhhkkkkkkk
WRWN THIO F RN B ; Wit until RN
; Mbde 0..3 evaluate ———--------------coemee oo
RUN LBR | _MIE I B 2, MDE ; Read 2 INP from|_MDE
JSM MIE@XQ TAB ; execute MDE 0..3
SBR O LAUF, @B 8, LI CHT ; Set 8 outputs fromQ LAF
DHAY 3 ; Vit 30ns!
BRA WRN ; Sill RN?
EXQTAB.WRD LINKS ;0; nove 1 left
WD RECHTS ;1 nove 1 right
WRD PLWS 12 +1
WD MNS 03 -1
Runni ng |ight functions
1, L ; Mve 1 left
RT™M 0
RECHTS ROT -1, LICHT ; Mve 1 right
RT™M 0
PLUE ADD 0101, LI CHr o+ 1
RT™M 0
MNE SB 0101, LI CHr ;-1
RT™M 0
;************** Ki || Task **#xsakaktrshkakkhkh kA kAKX KKK KAKXKAKARKRK IR AR KR KAK
ABCRT: SBR OLAF (B 8,0 ; Running light off
JK ; KILL this task

skkkkkkkkkkkkkk TAGKL 2 THE EIND ***xkkkkkokok koo kokokok ok ko ok ok ko ok ok ko ok ok ko ok ok ko ok ok ok ok ok

18 04.03.97 INDEL AG

ISM-6.0

Example

MSI:

CONFIG:

INDEL.INI:

TRANS:

SHOW, ID:

Installation

To assemble the files, enter the follow ing:

MSI/O EQUAL ; generates EQUAL.LS, .HX and .SY
MSI/O TASKO EQUAL ; generates TASKO.LS, .HX and .SY
MSI/O TASK1 EQUAL ;generates TASK1.LS, .HX and .SY
MSI/O TASK2 EQUAL ;generates TASK2.LS, .HX and .SY

The PC-Master needs a configuration-file, for it is possible to adjust itself to the
connected periphery-cards (see PC-Master documentation). Such a file is
generated w hen you enter CONFIG, the number of the IO-cards, set it on 2, for
example, and save under DEMO.PCM .

To test the Task, the project-file INDEL.INI must first be generated or adjusted (see
also chap. TOOLS). It is needed by TRANS, SHOW and ID and looks approximately
like this:

[Target]
System=PCMaster

[PCMaster]
Address=CB00
ConfigFile=DEMO.PCM
WarmBoot=no

[Trans]

Systemsoftw are=..\..\PCM.HEX
Dow nLoad=yes

AutoStart=yes
FloatingPointUnit=no

[ProjectFiles]
TASKO=0
TASK1=0
TASK2=0

Now , the operating-system and the Tasks with TRANS can be loaded in the PC-
Master. As in the file INDEL.INI AutoStart=yes is written, the task-0 (mostly called
Monitortask) is automatically started. The other Tasks will not be started, until the
RESET-key (INP-0) is pressed (see listing TASKO).

With the SHOW-Program, you can test and supervise the function of the IO-card.
The INDEL-Debugger ID serves the installation and debugging of the Tasks on
Source-Level.

INDEL AG

04.03.97 19

Example

ISM-6.0

20

04.03.97

INDEL AG

ISM-6.0 TOOLS

TOOLS

INDEL AG 04.03.97 21

TOOLS ISM-6.0
INDEL.INI
FILEINI All tools of the INDEL AG get the configuration-data from a central ".INI' - file, the
name of w hich can be transferred by calling the program as a parameter.
For example TRANS My ni.ini
INDEL.INI If there is no name specified for a certain parameter, all tools seek the
configuration file INDEL.INI in the actual index.
The form of such a file is similar to the ".INI-file structure of Window s. A title
(application-name) is follow ed by the so-called keyw ords (key-names) w hich
describe the single configuration-points:
[Appl i cati onl]
Keynanel=. . .
Keynane2=. . .
[Appl i cati on2]
Keynanel=. . .
It follow s a description of the single items :
[Target]
System= Defines the target systemthat is to be operated.
PCMASTER - the target systemis a PC-Master
IPS-32 - the target systemis an Indel 19"-Rack
Default : PCMASTER
[PCMaster]
Address= Specification of the address on w hich the PC-Master is located (rotary switch
values), for example CAO00.
Default : D000
ConfigFile= Name and path of Dualport RAM-configuration-file, creatid by CONFIG.EXE, for
example c:\Project\test.pcm.
Default : CONFIG.PCM
WarmBoot= NO - the target systemis, in every case, first initialized and then
stimulated w ith softw are
YES - the target systemis only initialized and stimulated w ith

softw are, if it isn't already busy or has broken dow n.
Default : NO

22

04.03.97 INDEL AG

ISM-6.0 TOOLS
EnableTime= NO - Probably used time-commands supply a wrong result
YES - In the PCMaster, PC-time and -date are available by the
standard-time-commands.
note : This option alw ays refers to all in the PC installed PCMasters.
The TSR-driver gets the according addresses from SET
PCMASTER = entry in Autoexec.bat.
FloatingPointValues=
NO The values in the DPR are represented in the usual fixed-point
format.
YES The values are represented in the floating-point format. (This
option is only available in connection with an INFO-Master.)
[IPS-32]
Baudrate= Baud-rate for the data transfer PC® IPS-32 rack
2400 2400 Baud (Modem)
9600 9600 Baud (Modem)
19200 19200 Baud HST-Modem
38400 38400 Baud Direct connection PC/AT ® IPS-32 rack
DataBits= Number of Data-Bits per BY TE.
7 7-Bit
8 8-Bit
Stop-Bits= 1 1 Stop-Bit
2 2 Stop-Bit
Parity= no no parity
even even parity
odd odd parity
Retries= Number of retries in case of transmission errors until there is an error message
on screen.
5 5 retries
Timeout= Latency in ms until retry. Usually, this entry is not needed because the optimally
time-out time is calculated according to the current baud-rate.
SlaveNumber= Slave-number of IPS-32 Rack
1 Slave-number 1
Port= PC/IAT interface number

COM1 firstinterface
COM2 second interface

INDEL AG

04.03.97 23

TOOLS ISM-6.0

[Trans]

SystemSoftw are= Name and path of the system-softw are, for example c:\pcmaster\pcm.hex
Default : PCM.HEX

SystemOffset= A dow nload-offset can be specified (only with Target=IPS-32). The offset is
entered as word address in hex.

Default : 0
SystemDow nload= NO - the system-softw are is not loaded in the target system.
YES - the system-softw are is loaded in the target system.
Default : YES
SystemVerify= NO - there is no comparison betw een source and target code.
YES - Source and target code are compared w ith each other and
possible errors are indicated.
Default : NO
SystemAutostart= NO - the operating-system s started and immediately set on HALT.
(For confirmed Indel Freaks this agrees w ith 'Init-Halt' w ith the
Ultility).
YES - the operating-systemis started normally
Default : YES
Dow nLoad= NO - those, in the [ProjectFiles] possibly indicated files, are not
automatically loaded in the target system.
YES - those, in the [ProjectFiles] possibly indicated files, are
automatically loaded in the target system.
Default : NO
Verify= NO - there is no comparison betw een source and target code.
YES - Source and target code are compared w ith each other and
possible errors are indicated.
Default : NO
Autostart= NO - the monitor task is started and immediately set on HALT.
YES - the monitor task is started
Default : NO
FloatingPointUnit= NO - the target system has no floating point unit.
YES - the target system has a floating point unit.
Default : NO

24 04.03.97 INDEL AG

ISM-6.0 TOOLS

[Show]
ScreenMode= 2 - 25 lines, black and w hite mode on colour adapter
3 - 25 lines, colour mode
7 - 25 lines, monochrome mode
258 - 43/50 lines, black and w hite mode on colour adapter
259 - 43/50 lines, colour mode
263 - 43/50 lines, monochrome mode
[Debug]
ScreenMode= see [Show]
RefreshRate= display-refresh-rate in sec
Default : 1
TabSize= tabulator characters (09) are extended in files to TABSIZE space characters.
Default : 8
maxInputs= The maximum number of inputs that an 'Inputs’-w indow manages can be entered.
The number is rounded by the debugger to a multiple of 16 and can't go beyond
4096.
Default : 256
maxOutputs= As 'maxInputs' but for the outputs.
maxFlags= As 'maxInputs’ but for the flags.
AutoTaskWndClose=
YES - the window of a task that doesn't existed any longer, is
automatically deleted
NO - not automatically deleted
Default : YES
WatchCaseSensitiv=
YES - at the w atches, capital or small letters are registered
NO - no observation of capital or small letters
Default : NO
SourceFileTrace= YES - the actual listing is alw ays indicated (for example at a single
step in another file)
NO - alisting change must be done by hand

(with 'View' ® 'Task source’)

INDEL AG 04.03.97 25

TOOLS ISM-6.0

Verify= YES - By loading dow n of project files, the source code is compared
w ith the target code. Possible differences are indicated.
NO - By loading dow n, there is no comparison betw een source and

target code.

MemoryFilename= - Off IDRev. 1.32, i’ s possible to w rite a MemoryDump directly
into a file. Open MemoryDump (® ALT-F10 ® W). The Default-
filename can be specified here.

NumberOfValues= - Off IDRev. 1.32, i’ s possible to w rite a MemoryDump directly
into a file. Open MemoryDump (® ALT-F10 ® W). The Default-
number can be specified here.

+

[ProjectFiles]

FILE1= Here, those project files are entered that are loaded from TRANS.EXE in the target
system or w hich should be know n by the Debugger, respectively.

After '=', a Dow nloadoffset (in hex) can be entered because w ith the ISM-
Compiler MSI.EXE, only Compilates in the address range 0..FFFF can be

generated.

0 - The file is loaded in the range 00'0000 ... 00'FFFF.
10000 - The file is loaded in the range 01'0000 ... 01'FFFF.
Default : 0

26 04.03.97 INDEL AG

ISM-6.0

TOOLS

MSI

MSI [/O] [/S] [/F] [IL] [/1] Sourcefile [Symbolfile]

MSIL.EXE The assembler for the ISM-5.0 operating system know s the follow ing sw itches:

/0 Generates a symbol file NAME.SY
All assignments of the first file can therefore be used w ith the assembling of the
further files.
This file is needed by INDEL-DEBUGGER "ID" to set w atches.

/S Generates a sorted list of all symbols in a listing-file NAME.LS.

IF Off the Rev. ISM-5.0, the bit-commands can be executed faster with the
addressing modes
Immediate, B , Immediate,OB , Immediate,FB ,
if ‘/F'is specified w ith the assembling. The commands are then assigned to the
new 17 command group; there are only the above-mentioned addressing modes
possible, but they can be executed very fast.

L The debug flag /L show s the listing of all passes on the screen and serves only
the debug finding in case of inexplicable pass errors.

/l Passes and Include-files are indicated w hen assembling.

FILES: NAME SOURCE-File
NAMELS LISTING-File
NAME. SY SYMBOL-File
NAME.HX CODE-File

Example: The machine has a common EQUAL-File, a common text file DTEXT and three
tasks 0..2:
MSI/0 EQUAL
Generates EQUAL.LS and EQUAL.SY. The file EQUAL.HX isn't used if it doesn't
contain tables that generate codes.
MSI/0 DTEXT EQUAL
Takes over the assignments of symbol file EQUAL.SY, assembles the text in
DTEXT and generates simultaneously with the .LS and .HX file also the new
symbol file DTEXT.SY; this latter contains all assignments of EQUAL and the start
addresses of texts. The three task-files can now use all assignments of EQUAL
and all texts of DTEXT.
MSI TASKO DTEXT
MsSI TASK1 DTEXT
MsSI TASK2 DTEXT

INDEL AG 04.03.97 27

TOOLS

ISM-6.0

TRANS

TRANS [IniFile.IN[

TRANS.EXE This program allow s the loading of operating softw are and the ISM-5.0 tasks in
the target system PC-Master or IPS-32 rack.

INDEL.INI The trans-program needs an .INI file w hich contains all specifications concerning
the target-system and the project-files. If there is no special IniFile.INI defined,
TRANS is automatically looking for INDEL.INI in the local directory.

Keynames: TRANS is looking for the follow ing keynames in INDEL.INI:

[Target]

[PCMaster] or [IPS-32]

[Trans]

[ProjectFiles]

You will find an exact description of the entries under INDEL.INI at the beginning of
this chapter.

FILES:

ConfigFile.PCM If you are w orking w ith the PC-Master, TRANS needs the Dualport-Ram-
configuration-file ConfigFile.PCM, generated by CONFIG. TRANS finds this file
thanks to an entry in [PCMaster].

System.HEX TRANS finds the operating-system System.HEX, that must be loaded, thanks to an
entry in [TRANS].

Tasks.HX If they are available, the ISM-5.0 task-programs tasks.HX, that must be loaded, are
entered under [ProjectFiles].

28 04.03.97 INDEL AG

ISM-6.0

TOOLS

ID [IniFile.INI|

ID.EXE The INDEL-DEBUGGER ID allow s the debugging of the ISM-5.0 Tasks in the target
systems PC-Master or IPS-32 rack. You can w ork with several Tasks at the same
time, without mutual influence.

INDEL.INI The ID-program needs an .INlI file, w hich contains all specifications concerning the
target-system and the project-files. If there is no special IniFile.INI defined, ID is
automatically looking for INDEL.INI in the local directory.

Keynames: ID is looking for the follow ing key-names in INDEL.INI:

[Target]

[PCMaster] or [IPS-32]

(Debug]

[ProjectFiles]

You will find an exact description of the entries under INDEL.INI at the beginning of
this chapter.

FILES:

Tasks.HX At the start, ID is looking for all task-files tasks.HX that are registered under
[ProjectFiles] and creates a .MAPfile, in w hich all start- and end-addresses of
those programs are entered. This is how the ID can, at every time, assign and
display the corresponding listing for every Task.

Tasks.LS The tasks.LS files are needed for the source-level debugging.

Tasks.SY If there is a w atch-window opened, the debugger needs the corresponding
symbol file.

INDEL AG 04.03.97 29

TOOLS

ISM-6.0

CONFIG

CONFIG [ConfigFile.PCM]

CONFIG.EXE With the CONFIG-Program, the Dualport-RAM configuration file is generated. Now
the PC-Master (PC/AT) or Master-32 (IPS-32) know s all connected interface-
cards and their operating modes.

PC-Master

ConfigFile.PCM TRANS w rites this file at the start in the PC-Master Dualport-RAM.

IPS-32

MASX.INC The operating system for the IPS-32 rack needs, to manage each MASTER-32
card, also a Dualport-RAM configuration file w ith the names MASL1.INC to
MAS3.INC. These files, in the .BY TE-Format, are appended at the end of file
IOMAS32.32K.

CONVERT.EXE The program CONVERT converts a ConfigFile.PCMfile in a .BYT file ConfigFile.INC:
CONVERT ConfigFile

30 04.03.97 INDEL AG

ISM-6.0 RAM-ORGANIZATION

RAM-ORGANIZATION

INDEL AG 04.03.97 31

RAM-ORGANIZATION

ISM-6.0

PC-MASTER RAM

WORD-ADR

00'0000.. System-Program
00'7FFF

00'8000.. User-CRAM

01'BFFF if it has 1MB Ram-ICs
00'8000.. User-CRAM

07'BFFF if it has 4MB Ram-ICs
07'C000.. System-Ram and
07'FFFF Task-Register
16'0000.. Dualport Ramto PC/AT
16'03FF FrmWare

16'0400.. Dualport Ramto PC/AT
16'07FE User range

32 04.03.97 INDEL AG

ISM-6.0

RAM-ORGANIZATION

WORD-ADR

00'0000..
00'7FFF

00'8000..
01'BFFF

00'8000..
07'BFFF

07'C000..
07'FFFF

16'0000..
16'03FF

16'0400..
16'07FE

40'07FE
40'07FF
40'0800

40'0801..
40'08FF

40'0900..
40'09FF

40'0A00..
40'0AFF

40'0B00..
40'0BFF

40'0C00..
40'0CFF

40'0D00..
40'0DFF

40'0E00..
40'0EFF

40'0F00..
40'0FFF

INFO-MASTER RAM

System-Program
User-CRAM
if it has 1MB Ram-ICs

User-CRAM
if it has 4MB Ram-ICs

System-Ram and
Task-Register

Dualport Ramto PC/AT
FirmWare

Dualport Ramto PC/AT
User range

INFO-Interface
INFO-Mask

INFO- Status

Card-IRQ-Vector

Job table

Rec Address

Rec. Data Bit 0..15

Rec Data Bit 16..32

Special Trans Address

Trans Address

Trains Data Bit 0..15

Trans Data Bit 16..32

INDEL AG

04.03.97

33

RAM-ORGANIZATION

ISM-6.0

34

04.03.97

INDEL AG

ISM-6.0 REGISTER

REGISTER

INDEL AG 04.03.97 35

REGISTER ISM-6.0
Task Register
Label REG 15 8 7 0
RNR R7F Rack NumbeR
MPC R7E Macro Program Counter
HTW R7D B/T|S|D| UBD-H BD - HALT "
TM R7C 10 ms TIMer
ABA R7B ABort Address
ABCAPO R7A ABort-Chara Ascii-Pos
ASLASR R79 ASc Length ASc-Reg nr
SEC R78 SECond timer
SPO R77 Copy of SPO Stack-Pointer
STK R76
STACK
R70
R6F
(ASCII-Buffer)
RAN
R5F
TASK-Register
ROO
R70..R7F: The registers R70..R7F are SY STEM-REGISTERS and assigned fixly. They can be
addressed as each other register (for example R7E) or with their names (for
example MPC).
R60..R6F: The registers R60..R6F are occupied as ASCI-Buffer (Standard-occupation by

SETD) in case of video- and ASCIl-commands. If there are no such operations

carried out, these registers can be occupied normally.

R0O0..R5F: The registers R00..R5F are the task-w orking-registers.

36

04.03.97

INDEL AG

ISM-6.0

REGISTER

RNR,MPC:

TIM:

SEC:

ABA:

ABORT:

SPO:

STK:

CAUTION:

Task-Control Register

Both registers RNR and MPC build together the 32-bit Macro-Program-Counter.
The Haltw ord HTW (STOP) contains 8 conditional and 7 unconditional HALT-Bits.

BD BO..B7 Conditional HALT, only if B15=0 is
uBD B8..B11 Unconditional HALT

B12 Occupied by DEBUG

B13 Occupied by S-I/O

B14 Occupied by Timer (DELAY)

B15 Halt-inhibit-Bit for BO..B7

w4 w0no

The system decrements the timer-register each 10 msec by 1, until it is 0000. [t
can be assigned w ith any commands, but it is also used by DELAY -command.

The system decrements the SEC-register each second by 1, until it is 0000.

An address is saved in the register ABA on w hich Johann jumps in case of an
abort. If the address is 0000, the task is, in case of an abort, killed, and all used
devices (VIDEO,SIO) are given free. If the address is not 0000, Johann jumps on
(ABA). The rack-number RNR cannot be left in this case! Also SPO and HTW are
reset, the devices remain reserved.

The address of the aborted command can be transferred to the stack with RTM
255 to be able to jump back on the command (Retry) w ith RTMO.

The stack-pointer SPO (Low er-Byte) indicates the stack-depth. The stack is
empty if it' s 00. With OFF (-1), the first place is occupied and so on. It is
automatically served from JSR, BSR and interests the user only in special cases.

Kill Stack: MOV 0,SPO

With each ABORT, a copy is made fromthe low er- to the higher-Byte and the

low er Byte is reset (= 00). The stack is now basicly deleted, but it can again be
reconstructed w ith MHLB SPO,SPO (Abort in a subroutine, in that you

wish to return).

The registers R76..R70 build the actual STACK. R76 is the first, R75 the second
stack place, and so on.

The stack depth is not limited !

* Off SystemRev. 5.11

INDEL AG

04.03.97 37

REGISTER ISM-6.0
ASCII-Control Register

ABC: This is the higher Byte in R7A and must be loaded w ith a special MOVE (for
example MLHB “ A” ,ABC).
If this character is entered by TIP or TOP on the keyboard, an abort is produced
(the task jumps on the ABORT-address).
ABC is set to 01B (ESC) with INID or SETD.

APO: This is the low er Byte in R7A and must be loaded w ith a special MOVE (for
example MLLB 0,APO).
This register is activated automatically by TIP, RTIP, ABR and ACMP and interests
the user only in special cases.
APO is set to 00 with INID or SETD.
In case of abort (for example SETD, Floppy-commands an so on), an error number
is set in APO, w hich show s the exact abort-reason.

ASL: This is the higher Byte in R79 and must be loaded w ith a special MOVE (for
example MLHB 01F,ASL).
ASL is the maximum number of characters, that are read in with TIP. You thus can
limit the size of the input-w indow in a screen-mask or make the ASCIl-buffer
longer or shorter (O1F character == 010 REG). ASL is also active w hen, with TIP,
the text is not saved in the ASCIl-buffer, but in any RAM-buffer.
ASL is set to 01Fw ith INID or SETD.

ASR: This is the low er Byte in R79 and must be loaded w ith a special MOVE (for
example MLLB 060,ASR).
In ASR is the register located in w hich the ASC-addressed ASCIl-buffer begins.
You can place the ASCIl-buffer in any register-range.
ASR s set to 060 w ith INID or SETD.

ASC: ASC is an ow n addressing mode! (Does not generate a register number.)

With ASC, the ASCII-Buffer is addressed. The beginning of the ASCII- buffer is
written dow n in ASR, the length in ASL.

38

04.03.97 INDEL AG

ISM-6.0 ADDRESSING MODES

ADDRESSING MODES

INDEL AG 04.03.97 39

ADDRESSING MODES ISM-6.0

Examples:

Format Of Commands

15 8 7 0
Command-Code | SSSS | DDDD command-head
Control-Bits SSSS | DDDD With more than 2 arguments
SAD Jump Address With conditional jumps
DATA SRC
DATA DEST
DATA SRC DATA DEST B :B,RxX,(Rxx),[RxX]

BBBB = command-code

SSSS = addressing mode SRC

DDDD = addressing mode DEST

SAD =jump address (LABEL or address)

The control bits are used w ith text-commands (for example CR/LF)
or as command-code extension (for example Floppy-commands).

20C3 MOV 033,R44
3344

2008 MOV 03333,@4444
3333
4444

60C3 CBR 033,=,R44,SAD : SAD = 05555
5555
3344

9033 TOP RSER5F,ASC' ,CRLF
02A0
5E5F

9F01 ARC 04F0C,100:200,R33,(R44),REL+C
0834
0500
4F0C
0064
00C8
3344

40

04.03.97 INDEL AG

ISM-6.0

ADDRESSING MODES

Addressing Modes

SRC DEST DATA ADDRESSI NG MODE
0 0 VWAV WAV VWAV WAV WORD W
1 1 LLLL LLLL LLLL LLLL D WORD D F
HHHH HHHH HHHH HHHH INT / FLOAT
2 2 QX BYTE :B
3 3 ORRR RRRR REG R00..R7F
3 3 IXXX XXXX NOT USED
4 4 ORRR RRRR (REGQ
4 4 1RRR RRRR [REG
5 5 0000 0000 : ORRR RRRR OFF(REG
5 5 0000 0000 : 1RRR RRRR OFF[REG
6 6 0000 0000 . 0BBB BBBB OREG(BREG)
6 6 0000 0000 : 1BBB OREF BREG
BBBB
6 6 INNN NNNN : ORRR RRRR (REGN
6 6 INNN NNNN : 1RRR RRRR [REG N
7 7 0000 0000 : ORRR RRRR REG@GADRE
7 7 0000 0000 : 1RRR RRRR REG@OA\DRE
8 8 AAAA AAAA @\DRE
9 9 0000 0000 OFF{ PO }
9 9 1000 0000 OFF@ PO }
A A none ASC
B B MANTI SSA DOUBLE
MANTI SSA - PRECI SI ON
MANTI SSA - FLOATI NG
S: EXPONT : MANT - PO NT
C QAR AR BYTE
D ORRR RRRR REG
D 1 NOT USED
E ORRR RRRR (REGQ
E 1RRR RRRR [REG
C none 1B
D none B
E none FB
F F NOT USED

INDEL AG

04.03.97

41

ADDRESSING MODES ISM-6.0

XXX
Immediate

2/C XX[Exx][:B]

0 XXXX[EXX][:W]

1 XXXXXXXX[ExX][:D]

Explanation: The command can be specified as a simple number. As far as the format isn't
forced with :B, :W or :D, the MSl-assembler distributes the values in the command
as follows:

BYTE 0 .. 127 000000000 ... 00000007F

-128 ... -1 OFFFFFF80 .. OFFFFFFFF

WORD: 128 ... 65535 000000080 ... OOOOOFFFF

-32768 ... -129 OFFFF8000 ... OFFFFFF7F
DOUBLE-WORD: -2147483648 ... 4294967294 000010000 ... OFFFFFFFF
65536 ... -32769 080000000 ... OFFFF7FFF

The system expands BY TE and WORD-specifications in the command alw ays
w ith operational sign to DOUBLE and only than executes the operation!

Caution: The assembler changes in case of values > 07F automatically from BY TE to
WORD, but not in case of values > 08000 from WORD to DOUBLE ! (Mostly, BY TE
and WORD operations are executed!) In case of DOUBLE-instructions, this can
lead to errors:

Examples: MOV 0AO,R10 ; R10 = 00AOQ correct!
MOV 0AO000,R10 ; R10 = A000 correct!
MOVD 0AO000,R10 ;R11,10 =HFH AO000 wrong??
MZWD 0AO000,R10 ; R11,10 = ' A00O correct!
MOVD 0A000:D,R10 ; R11,10 =0000" A000 correct!
MXWD 0AO000,R10 ; R11,10 = A000 demanded!
MXWD 0A000:D,R10 ; R11,10 = A000 demanded!

42 04.03.97 INDEL AG

ISM-6.0 ADDRESSING MODES

MOV 1E4,R10 ; R10 = 2710 = 10000

INDEL AG 04.03.97 43

ADDRESSING MODES ISM-6.0

XXX. XX

FLOATING POINT Immediate

1 XXX XX[EXX][:F]
B XXX XX[EXX][:L]
Explanation: If there is a number w ritten w ith decimal point, the assembler automatically sets a
floating point number (provided that approved w ithin the command!).
SINGE-PREC: -3.4028235E-38 ... 3.4028235E38
DOUBLE-PREC: -2.225073858507201E-308 ... 2.225073858507201E308
Note: The command itself decides, w hether SINGLE or DOUBLE PRECISION numbers
must be put in. The specifications :F and :L have no influence and can be left out!
Caution: The MSl-assembler for PC/AT can only process exponents up to E38!
Examples: MOVF 1.2E3,R00 ; SINGLE PRECISION
MOVL 1.2E3,R00 ; DOUBLE PRECISION
FLOAT -1.2E3 ; SINGLE PRECISION
.LONG 1.2E3 ; DOUBLE PRECISION
44 04.03.97 INDEL AG

ISM-6.0

ADDRESSING MODES

@ADR

Address

8 @ADR

Explanation: Show s an address in a locale (64K) RACK-range.
ADR = 0000 ... OFFFF

Note: This addressing mode is better used w ithin a listing only (@LABEL). Addresses
outside the local 64K-range are addressed w ith the addressing modes REGISTER-
INDEXED and POINTER-INDEXED!

Example: TOP DEV,POS,@TEXT

TEXT: TIXT “INDEL AG"
INDEL AG 04.03.97 45

ADDRESSING MODES ISM-6.0

REG@ADR

Address w ith Register-offset

7 REG@ADR
Explanation: On ADR, w ithin a table, the value w hich is written in REG is displayed.
Note: The table must be in the direct nearness of the command!
I ADRE must be in the range of £127. of MPC !!
Example: R11 = 0003
MOV R11@ATAB,R66 ; R66 =03333
ATAB: .WORD 0000,01111,02222,03333,04444,...
46 04.03.97 INDEL AG

ISM-6.0 ADDRESSING MODES

REG@@ADR

Indirect (Address w ith Register-Offset)

7 REG@@ADR
a
Explanation: On ADR, w ithin a table, the address w hich is written in REG is displayed.

This address is addressed by the command.

Note: The table must be in the direct nearness of the command!
I ADRE must be in the range of +127. of MPC !

OFFSET-REG: The offset-Register alw ays contains a 16-Bit offset w ith operational sign.
(-32768 ... 0 ... +32767).

Example: R11 = 0002

MOV R11@@ATAB,R66 ; R66 = 01234

ATAB: .WORD 01000,02000,ADRE,03000,...

ADRE \WORD 01234

INDEL AG 04.03.97 47

ADDRESSING MODES ISM-6.0

Explanation:

Note:

Load Pointer:

Example:

OFF{POI}

Pointer indexed

OFF{POl

All tasks have 12 common pointers (Pointer 0..11) and each task has 4 own, local
pointers (pointer 12..15). Such a pointer alw ays contains a 32-Bit

(base-) address. Relative to this pointers, a data element can now be addressed
w ith fixed offsets.

The offset is alw ays positive and must be in the range of 000 ... 07FF.

For the pointers can load themselves, the pointer-0 alw ays indicates the common
pointer-table after start up; after the start of a single task (EXQ..), the pointer -12
indicates itself. This makes it possible to load the other pointers first and, on
request, also pointer-0 respectively pointer-12.

Load pointer 4 w ith the base 1' A0O00 and than w rite on the 16th place of this data-
range the value 01234:
(The address of the pointer-4 = 8{0} , because of Double-Word entries!)

MOVD 01A000,2*4{0} ; Pointer-4 =01’ A0OO
MOV 01234,16{4} ; ADRO1" A010 =01234

48

04.03.97 INDEL AG

ISM-6.0 ADDRESSING MODES

OFF@{POl}

Indirect (Pointer indexed)

9 OFF@{PO}

Explanation: All tasks have 12 common pointers (Pointer 0..11) and each task has 4 ow n, local
pointers (pointers 12..15). Such a pointer alw ays contains a 32-Bit (Base-
)address. Relative to this pointers, an address can now be indicated w ith fixed
offsets; this allow s a data element to be addressed.

The WORD-address on OFF@{POI} refers to the rack in w hich the address-table

is located!
Note: The offset is alw ays positive and must be in the range of 000 ... 07FF.
Load pointer: See OFF{POI}

This addressing serves, for example, the indirect text output by text-table. The
text can thereby be located in any (64k)RACK-range. By reloading the text-
pointer, the w hole machine can also be converted in another national language.

Example: TEXT = 5 ; POINTER-occupation

ADDR @TTAB,2*TEXT{0} ; Choosing the TEXT-table
TOP DEV,POS,0@{TEXT},PCR ; Display = INDEL AG
TOP DEV,POS,3@{TEXT} ; Display = CH-8308 ILLNAU

TTAB: .WORD TXTO,TXT1,TXT2,TXT3 ; TEXT-Table

TXTO: TIXT ‘NDEL AG'

TXTL: TIXT ‘Industrielle Elektronik’

TXT2: TIXT ‘ Langgstrasse 17

TXT3: TIXT ‘ CH-8308 LLNAU

INDEL AG 04.03.97 49

ADDRESSING MODES ISM-6.0

3/D

Explanation:

Note:

Example:

ABORT:

REG

Register

REG

Every task has 128 registers (R00..R7F) that are addressed hereby. The registers
R70..R7F can also be addressed w ith their names (see also SY STEM-REGISTER).

With DOUBLE-WORD access, alw ays tw o registers in series are addressed!
With LONG- FLOATING access, alw ays four registers in series are addressed!

MOV ABORT,ABA ; LOAD ABA WITH THE ADR ABORT
MOV 1300,TIM ; LOAD TIMER WITH 1.3 SEC
MOVD 012345678,R10 ;R11=01234, R10=05678

50

04.03.97 INDEL AG

ISM-6.0

ADDRESSING MODES

4/E

4/E

Explanation:

(REG)

[REG]

OFFSET:

Example:

TAB:

OFF[REG]

Register indexed (w ith Offset)

(REG)
OFF(REG)
[REG]

OFF[REG]

The register (Rxx) contains an address that is addressed (w ith offset).

With paranthesis (Rxx), the register contains a 16-Bit address in the same
(64k)RACK-range as the command.

With brackets [Rxx], the register contains a 32-Bit address.

In front of the paranthesis and brackets, an offset of maximal -128 ... +127 can be
indicated to this address.

MOV TAB,R11 ; R11 =TAB-ADR

MOV 3(R11),R66 ; R66 =3333

MOV (R11),R66 ; R66 =1234

ADDR ASC,R10 ; R11,R10 = ADR OF ASCl-buffer
MLLB 3[R10],R00 ; ROO =7 THCHARA INASC

.WORD 01234,01111,02222,03333,04444...

INDEL AG

04.03.97 51

ADDRESSING MODES

ISM-6.0

Explanation:

(REG)

[REG]

Example:

TAB:

[REG]N

Register indexed w ith Auto-Increment/Decrement

(REG)N

[REG]N

N is automatically added to the address that the register contains; in case of
decrement, it is added before, in case of increment after the operation.

I POST-INCREMENT / PRE-DECREMENT !!

With paranthesis (Rxx), the register contains a 16-Bit address in the same

(64k)RACK-range as the command.
With brackets [Rxx], the register contains a 32-Bit address.

N must be w ithin the range of -64...+63.

ADDR @TAB,R10 ; R11,R10 = TAB-ADR
MOV (R10)+5,R66 ; R66 = 01234 , R10 = TAB+5
MOV (R10)-3,R66 ; R66 = 02222 , R10 = TAB+2

\WORD 01234,01111,02222,03333,04444,05555

52

04.03.97

INDEL AG

ISM-6.0

ADDRESSING MODES

REG[REG]

Register indexed w ith Register Offset

6 REG(REG)

6 REG[REG]

Explanation: The target address is formed by adding the base address in (Rxx) and the offset
in Ryy.

(REG) With paranthesis (Rxx), the register contains a 16-Bit address in the same
(64k)RACK-range as the command.

[REG] With brackets [Rxx], the register contains a 32-Bit address.

OFFSET-REG: The offset-register alw ays contains a 16-Bit offset w ith operational sign
(-32768....0....+32767).

Example: MOV TAB,R10 ; R10 = TAB-ADR
MOV 2,R00 ; ROO = OFFSET
MOV RO0O(R10),R66 ; R66 = 02222
ADDR ASC,R10 ; R11,R10 = ASCI-BUFFER ADR
MOV 3,R00 ; ROO = (WORD)OFFSET
MHLB ROO[R10],R66 ; R66 = 6" TH CHARA INASC

TAB: .WORD 01234,01111,02222,03333,04444,05555
INDEL AG 04.03.97 53

ADDRESSING MODES ISM-6.0

ASC
ASCII-Buffer
A ASC
Explanation: ASC indicates the ASCII-buffer, defined in the registers ASR (ASCIl-register

number) and ASL (ASCI-buffer size).

Note: After INID or SETD, the registers R60..R6F form the ASCIl-buffer!

This addressing mode does not generate SRC/DEST-data in the command!

Example: MLHB 10,ASL ; MAX 10 CHARACTERS INPUT
TIP DEV,POS,ASC ; TEXT-INPUT IN THE ASCI-BUFFER
TIME ATIMASC ; TIME IN ASCII
TOP DEV,POS,ASC ; DISPLAY OF THE ASCI-BUFFER

54 04.03.97 INDEL AG

ISM-6.0 ADDRESSING MODES
1B
INPUT-Base
C B
Explanation: IB indicates the first input-card.
Note: May be specified only as second parameter (DEST) !
This addressing mode does not generate SRC/DEST-data in the command!
Example: THTO 15,B s WAITUNTIL F15=1
TBR1 128,1B,ERROR ; ERRORIFI-128 =1
INDEL AG 04.03.97 55

ADDRESSING MODES ISM-6.0

OB
OUTPUT-Base
D OB
Explanation: OB indicates the first output-card (or OUT-COPY).
Note: May be specified only as second parameter (DEST) !

This addressing mode does not generate SRC/DEST-data in the command!

Example: SBIT 010,0B ; SET THE OUTPUT 16

MOTOR =35 ; OUTPUT MOTOR ON

TBRO MOTOR,OB,MOT_AUS ; TEST IF MOTOR = OFF

56 04.03.97 INDEL AG

ISM-6.0 ADDRESSING MODES
FB
FLAG-Base
E FB
Explanation: FB indicates the first FLAG-Word.
Note: May be specified only as second parameter (DEST) !
This addressing mode does not generate SRC/DEST-data in the command!
Example: THTO 13,FB ; WAITUNTIL F-13 =1
CBIT 14,FB ; SETF-14=0
INDEL AG 04.03.97 57

Global Address - Commands ISM-6.0

Global Address - Commands

58 04.03.97 INDEL AG

ISM-6.0 Global Address - Commands
GGA
Get Global Address
B7_00_ GGA SRC, DEST.D
Explanation: Search the label with the name in SRC in the global variable table and w rite the
word address (of the label) to DEST.
If there exist labels in different modules w ith the same name, the module name
can be specified as additional search key. For a label can be recorded in the
global variable table, it must be exported.
ERRORS: The task jumps by the follow ing errors on its ABORT-address:
(The error-number stands in 'APQO')
041 The label wasn't found
042 The label has an uneven byte-address
Example 1: Write the address of the ISEC-counter to R20/21.
GGA @TX.ISEC, R20
TX_ISEC: TIXT'V_SYISEC
Example 2: Write the address of the system-busy-table to RO/R1.
GGA @TX_BUSY, RO
TX_BUSY: TIXT 'SYSTEM.V_BUSY'

INDEL AG

04.03.97 59

Global Address - Commands ISM-6.0

B7_02_

Explanation:

ERRORS:

Example:

TX_1MS:

GGP

Get Global Pointer

GGP SRC, DEST:D

Search the label with the name in SRC in the global variable table, interpret the
double w ord of the label' s address as byte-pointer, change this latter in a w ord-
pointer and w rite the result to DEST.

If there exist labels in different modules w ith the same name, the module name
can be specified as additional search key. For a label can be recorded in the

global variable table, it must be exported.

The task jumps on its ABORT-address in case of the follow ing errors:
(The error-number stands in 'APQ’)

041 The label wasn't found

042 The byte-pointer is uneven

Write the pointer on the central 1ms timer to RO/R1.
GGP @TX_1MS, RO

IXT'P_TIMIMS'

P_TIMIMS is defined in the module INIT, for example as follow s:

P_TIM1MS: .DOUBLE X'1603EA*2

> RO/R1 = 01603EA

60

04.03.97 INDEL AG

ISM-6.0

Global Address - Commands

GGD

Get Global Descriptor

B7_01_ GGD SRC, DEST:D

Explanation: Search the label with the name in SRC in the global variable table and w rite the
pointer on its descriptor to DEST.
If there exist labels in different modules w ith the same name, the module name
can be specified as additional search key. For a label can be recorded in the
global variable table, it must be exported.

ERRORS: The task jumps on its ABORT-address in case of the follow ing errors:
(The error-number stands in 'APO’)
041 The label wasn't found

Example : Use the library-function " F_EXQTSK" to start a Johann on address 045A000.
GGD @TX_EXQ, R10
RCXP 045A000, 0, R10

TX_EXQ: TXT. 'F_EXQTSK'

INDEL AG 04.03.97 61

TASK-CONTROL-Commands ISM-6.0

TASK-CONTROL-Commands

62 04.03.97 INDEL AG

ISM-6.0 TASK-CONTROL-Commands

EXQ
EXeQute
0Cxx SAD EXQ SRC,DEST,SAD
Explanation: Start the program at SRC on the first free task and w rite the number of this task to

DEST. All registers in the new task are deleted!

If there is no task free, jump to SAD.

Example 1: Start the first free task with the start-address ADRE.
Calculate the new task-number to REG 00:

EXQ ADRER00,SAD

Example 2: Start a task on the double-w ord-address 045’ A0OO:
MOVD 045A000,R10 ; R10 = TASK START-ADDRESS
BSR EXQD ; START THE TASK

Subroutine for the command EXQD:

R10 =ADRD
R00..03 Used

EXQD: EXQ HALT,R00,ERROR ; ROO = TASK-PROG NUMBER
GPNR RO1 ; RO1 = OWN PROG-NUMBER
SuB RO1,R00 ; ROO = PNR-DIFFERENCE
MUL 080,R00 ; ROO = REGISTER-SPACE
ADDR MPC,R02 ; R02 = ADR OF OWN MPC
MOVD R10,RO0[RO2] ; START THE TASK ON 45’ A00O
RTM 0

HALT: BRA HALT ; TASK STOPS

INDEL AG 04.03.97 63

TASK-CONTROL-Commands ISM-6.0
GPNR
Get Program NumbeR
0Bx0 GPNR DEST
Explanation: Write the ow n Task-Number to DEST.
Example: Calculate the ow n task-number to REG 00:
GPNR ROO
64 04.03.97 INDEL AG

ISM-6.0 TASK-CONTROL-Commands

JSKI
Johann Self Kil
00x0 JSKI
Explanation: Delete the ow n task and set all reserved devices free.
Example: Delete the ow n task:
JSKI

INDEL AG 04.03.97 65

TASK-CONTROL-Commands ISM-6.0

JOKI

JOhann Kil
OFx0 JOKI SRC
Explanation: Delete the task w ith the Task-Number in SRC and set all its reserved devices free.
Example: Delete task number. 5:
JOKI 5
66 04.03.97 INDEL AG

ISM-6.0

TASK-CONTROL-Commands

JSAB

Johann Self ABort

0Dxx JSAB

Explanation: Set the ow n task on its Abort-Address ABA. Save the current stack pointer (into
R77-HIGH-Byte) and set it (R77- LOW-Byte) to 00.
lf ABA = 0000, delete the task and set all its reserved devices free.

Example: Jump on ABA (Kill Stack):
JSAB

INDEL AG 04.03.97 67

TASK-CONTROL-Commands ISM-6.0

JOAB
JOhann ABort
OExx JOAB SRC
Explanation: Set the task w ith the Task-Number in SRC on its Abort-Address ABA. Save its

current stack pointer (into R77-HIGH-Byte) and set it (R77-LOW-Byte) to 00.

If ABA = 0000 delete the task and set all its reserved devices free.

Example: Abort the task w ith the number in R0O:

JOAB ROO

68 04.03.97 INDEL AG

ISM-6.0

TASK-CONTROL-Commands

AS5x0

Explanation:

Note:

Example 1:

Example 2:

DELAY

DELAY

DELAY SRC

Set the 10ms Timer * TIM w ith the value in SRC and set the Delay-Halt-Bit T in the
Halt-Word HTW. The timer-interrupt deletes this Halt-Bit if TIM = 0000.

Because the task is on HALT during the delay, the systemis relieved by one task
in this time. The system performance can thus be considerably increased by
brilliant application of this command!

Critical commands are for example: GTOP, TIP, HTOP, TIME

Set the output 15 for 1 second to one:

SBIT 15,0B
DELAY 100
CBIT 15,0B

Time-large-screen-display (only RACK-Version):

LOOP: TIME ATIMASC ; Get time (ASCII)
GTOP DEV,POS,ASC ; Large-screen-display
DELAY 100 ; System-relief 1-SEC
BRA LOOP

INDEL AG

04.03.97 69

Jump-Commands ISM-6.0

Jump-Commands

70 04.03.97 INDEL AG

ISM-6.0 Jump-Commands
BRA

BRanch Alw ays

F___SAD BRA SAD

Explanation: Jump to the address SAD. Only the displacement SAD-momentary address is filed
in the command.
With SAD only one LABEL can be specified!
Displacement max. +07FF (1-WORD command)

Example: Jump to LABEL:

LABEL: BRA LABEL

INDEL AG

04.03.97 71

Jump-Commands ISM-6.0

BSR
Branch to Sub-Routine
E__SAD BSR SAD
Explanation: Save the actual MPC in the stack and jump on the address SAD. Only the

displacement SAD-momentary address is filed in the command.
With SAD only one LABEL can be specified!
Displacement max. +07FF (1-WORD Command)

Example: Call up an under-program named SUBROUT:

BSR SUBROUT

72 04.03.97 INDEL AG

ISM-6.0

Jump-Commands

IMP_

JuMP
01x0 JIMP SRC
02x0 JMPD SRC.D
Explanation: Jump on the address SRC.
Here, each addressing mode can be used with SRC!
Example 1: Jump on the address 0A00O in the actual (64k)RACK-range:
JMP 0A000 ; RNR unchanged !
Example 2: Jump on address 04000 in rack-3:
IADR: DOUBLE 034000
JMPD @IADR ; RNR =3, MPC = 4000
INDEL AG 04.03.97 73

Jump-Commands ISM-6.0

JSM
Jump to Subroutine
03x0 JSM SRC
Explanation: Save the actual MPC in the stack and jump on the address SRC in the actual

(64K)RACK-range.
Here, each addressing mode can be used with SRC!

Example 1: Jump in the subroutine on ADRE:
JSM ADRE
Example 2: Jump on the address that stands in 011(R22):

JSM 011(R22)

74 04.03.97 INDEL AG

ISM-6.0 Jump-Commands

JAT

Jump indirect Address-Table

06__ JAT AT

Explanation: Jump on the address that stands under AT in the address table.
AT max. 0..0FF (1-WORD command)
The address of ATAB is set in the INIT w ith the pointer (HWMCB) on the Macro
Base-Page.

Example: MPC = (33(ATAB))

JAT 033

INDEL AG 04.03.97 75

Jump-Commands

ISM-6.0

JST

Jump to Subroutine indirect address-Table

07__ JST AT

Explanation: Save the actual MPC in the stack and jump on the address that stands under AT in
the address table.
AT max. 0..0FF (1-WORD Command)
The address of ATAB is set in the INIT w ith the pointer (HWMCB) on the Macro
Base-Page.

Example: MPC = (33(ATAB))
JST 033

76 04.03.97 INDEL AG

ISM-6.0 Jump-Commands
RTM

Return To Main program

04__ RTM N

Explanation: Return to the main program at the end of a subroutine. Thereby, N w ords of the
main program are skipped.
N max. *O07F

Example: Return to the main program and skip the next five w ords:

RTM 5

INDEL AG

04.03.97 77

Jump-Commands ISM-6.0
JEX
Jump EXternal
0800 MSAD JEX MSAD
Explanation: Jump in a MICRO-program w ith the address MSAD.
ff MSAD < 02000, than CXP MSA D(JEX-MODULES)
if MSAD >= 02000, than JSR MSAD
CPU-Register: The NS32016-registers are loaded as follow s:
R7 = Address of REG 00 of the calling up task
R6 = Address of JEX COMMAND (byte address)
R5 = Address of NEXT COMMAND (w ord address)
All CPU-registers may be changed!
The JEX-module is determined by the INIT (for example HWJMD = MOD-5).
Example 1: Call MICRO-ROUTINE on address 0100:B of the REX-Module:
JEX 0100 ; PC = 0100(REX-MODULE)
Example 2: Call LOCAL-MICRO-ROUTINE that stands on address MICRO:
JEX MICRO ;PC=2*MICRO (BYTE-ADR)
MICRO: .BYTE 012,00 ; RETO NS32000-Micro
NSB.EXE: The program NSB compiles a NS32000 assembler-program (NAMELST) in a

.BYTE-File (NAME.BYT) that can be integrated w ith .INCLUDE.

78

04.03.97 INDEL AG

ISM-6.0 Jump-Commands

REX

load Registers and jump EXternal

09xx MSAD REX SRC:D,DEST:D,MSAD

Explanation: Jump in a MICRO-Program w ith the address MSAD and transfer the parameter to
SRC and DEST.
if MSAD < 02000, than CXP MSAD(REX-MODULES)
if MSAD >= 02000, than JSR MSAD

CPU-Register: The NS32016-registers are loaded as follow s:

R7 = Address of REG 00 of the calling up task

R6 = Address of REX COMMAND (byte address)
R5 = Address of NEXT COMMAND (w ord address)
R4 = Address of SRC

R3 = Address of DEST

R2 = Address of DEST

R1 = Contents of SRC:D

RO = Contents of DEST:D

All CPU-registers may be changed!

The REX module is determined by the INIT (for example HWJMD = MOD-5).
Example 1: Call REX-MODULE PC(MOD)=0A and transfer the contents of REG0O0 and the
constant 045 to the micro program:
REX R00,045,0A
Example 2: Calculate the WORD-address of the OUT-BASE into REG 01,00 (since FB,IB,OB
are not allow ed as SRC, the ADDR-command is not possible):
REX R00,0B,D_ADR ; Is also possible for FB,IB...
Micro-program: Address from DEST to SRC!

D ADR: .BYT 0CE,00F,013,0,03E,012,0,0

EXTSD R2,0(R4),1,31 i R2/2® [R4]
RET 0 ; back to macro
NSB.EXE: The program NSB compiles a NS32000 assembler-program (NAMELST) in a

.BYTE-File (NAME.BYT) that can be integrated w ith .INCLUDE.

INDEL AG 04.03.97 79

Jump-Commands

ISM-6.0

B7_03_

Explanation:

CPU-Register:

Example :

CXP

Call external Procedure

CXP DESC.D

Jump in the micro-procedure w ith the descriptor DESC.
DESC must first be loaded w ith GGD.

The NS32016-registers are loaded as follow s:

R7 = Address of REG 00 of the calling up task

R6 = Address of JEX COMMAND (byte address)
R5 = Address of NEXT COMMAND (w ord address)
All CPU-registers may be changed!

Call MICRO-ROUTINE "MEIN_PROC" that is defined in any module.

GGD @TX_MEN, R10
CXP R10

TX_MEIN:.TXT '"MEIN_PROC

80

04.03.97 INDEL AG

ISM-6.0 Jump-Commands

RCXP

load Registers and Call external Procedure

B7_04_ RCXP SRC:.D,DEST:D,DESC:D

Explanation: Jump in the MICRO-Procedure w ith the descriptor DESC and transfer the
parameter to SRC and DEST.
DESC must first be loaded w ith GGD.

CPU-Register: The NS32016-registers are loaded as follow s:
R7 = Address of REG 00 of the calling up task
R6 = Address of REX COMMAND (byte address)
R5 = Address of NEXT COMMAND (w ord address)
R4 = Address of SRC
R3 = Address of DEST
R2 = Address of DEST
R1 = Contents of SRC:D
RO = Contents of DEST:D
All CPU-registers may be changed!

Example : Use the library-function " F_EXQTSK" to start a Johann at the address 045A000.

GGD @TX_EXQ, R10
RCXP 045A000, 0, R10

TX_EXQ: .TXT.'F_EXQTSK'

INDEL AG 04.03.97 81

BIT-Commands

ISM-6.0

BIT-Commands

82

04.03.97

INDEL AG

ISM-6.0

BIT-Commands

TBRO

Test and BRanch if bit =0

10xx SAD TBRO OFF,BASESAD
Explanation: Test the Bit (Offset,Base) and jump on SAD if the
Bit = 0.
TBSRO: If the command jumps on SAD, the return address can, with RTM 255, be got in
the stack and then, with RTM O (beyond the TBR-command), be jumped back
(Equivalent a TBSR-command).
Example 1: Jump on LABEL if the input 35 =0:
TBRO 35,1B,LABEL
Example 2: Jump on LABEL if the flag w ith the number in ROO
is not set:
TBRO RO0,FB,LABEL
* Off SystemRev. 5.11
INDEL AG 04.03.97 83

BIT-Commands

ISM-6.0

TBR1

Test and BRanch if bit =1

11xx SAD TBR1 OFF, BASE, SAD

Explanation: Test the Bit (Offset,Base) and jump on SAD if the
Bit = 1.

TBSR1: * If the command jumps on SAD, the return address can, with RTM 255, be got in
the stack and then, with RTM 0 (beyond the TBR-command), be jumped back
(Equivalent a TBSR-command).

Example 1: Jump on LABEL if the input 15 = 1:
TBR1 15,IB,LABEL

Example 2: Jump on LABEL if there is a negative number in R10
(Bit 15 = signum of the number = 1 if negative):
TBR1 15,R10,LABEL

84 04.03.97 INDEL AG

ISM-6.0

BIT-Commands

* Off SystemRev. 5.11

INDEL AG

04.03.97

85

BIT-Commands ISM-6.0

THTO
Test and HalT if bit=0
15xx THTO OFF,BASE
Explanation: Halt if the Bit (Offset,Base) = 0.
Example 1: Wait until the FLAG 5 = 1:
THTO 5,FB
Example 2: Wait until the input 35 is set:
THTO 35,B

86 04.03.97 INDEL AG

ISM-6.0 BIT-Commands

THT1
Test and HalT if bit=1
16xx THT1 OFF,BASE
Explanation: Halt if the Bit (Offset,Base) = 1.
Example 1: Wait, until the FLAG w ith the number in ROO is deleted:
THT1 R00,FB
Example 2: Wait until the input 5 is not set any more:

THT1 5,B

INDEL AG 04.03.97 87

BIT-Commands

ISM-6.0

THTTO

Test and HalT if bit =0 and branch if Timeout

46xX THTTO OFF, BASE, TIME, ERRORNR, SAD

Explanation: Halt (if the Bit (Offset,Base) = 0) as long as either the Bit (Offset, Base)= 1 or the
time (TIME) has run dow n. If the time (TIME) has run dow n, jump on SAD and w rite
ERRORNR to R70.

RETRY: * If the command jumps on SAD, the address can be got, with RTM 255, from THTT-
command itself on the stack and (for example after an error message) be jumped
back on the command with RTM 0 (Retry).

Example: Wait 1 sec. max until the input 5 = 1. In case of Timeout, jump to LABEL and w rite
7 in R70.

THTTO 5, 1B, 1000, 7, LABEL
* Off SystemRev. 5.11
88 04.03.97 INDEL AG

ISM-6.0

BIT-Commands

THTT1

Test and HalT if bit = 1 and branch if Timeout

A7xx THTT1 OFF, BASE, TIME, ERRORNR, SAD

Explanation: Halt (if the Bit (Offset,Base) = 1) as long as either the Bit (Offset, Base)=0 or the
time (TIME) has run dow n. If the time (TIME) has run dow n, jump on SAD and write
ERRORNR to R70.

RETRY: If the command jumps on SAD, the address can be got, with RTM 255, from THTT-
command itself on the stack and (for example after an error message) be jumped
back on the command with RTM 0 (Retry).

Example: Wait 1 sec. max until the input w ith the number in R10 = 0. In case of Timeout,
jump to LABEL and write 8 in R70.

THTT1 R10, IB, 1000, 8, LABEL
* Off SystemRev. 5.11
INDEL AG 04.03.97 89

BIT-Commands

ISM-6.0

SBIT

Set BIT

12xx SBIT OFF,BASE

Explanation: Set the Bit (Offset,Base) = 1.

Remark: This READ-MODIFY -WRITE command is executed in the interlocked-mode and
therefore can, even in multiprocessor-operation, not be interrupted by another
CPU. That is why it is also used for the communication of several CPUs on the
BUS by FLAGs.
(Only SBIT- and CBIT-commands)

Example 1: Set the output 45 on 1:
SBIT 45,0B

Example 2: Set the Bit with the number in ROO in the register R10:
SBIT R00,R10

Example 3: Set the flag 128:
SBIT 128,FB

90 04.03.97 INDEL AG

ISM-6.0

BIT-Commands

CBIT

Clear BIT

13xx CBIT OFF,BASE

Explanation: Clear the Bit (Offset,Base) = 0.

Remark: This READ-MODIFY -WRITE command is executed in the interlocked-mode and
therefore can, even in multiprocessor-operation, not be interrupted by another
CPU. That is why it is also used for the communication of several CPUs on the
BUS by FLAGs.
(Only SBIT- and CBIT-commands)

Example 1: Clear flag 5:
CBIT 5,FB

Example 2: Clear Bit 15 in REG 33:
CBIT 15,R33

INDEL AG 04.03.97 91

BIT-Commands ISM-6.0
IBIT
Invert BIT
14xx IBIT OFF,BASE
Explanation: Invert the Bit (Offset,Base); 1® 0;0® 1.
Example: Flash w ith the output 155 in intervals of 1 second:
LOOP: IBIT 155,0B ; CHANGE
DELAY 100 ; 1 SEC
BRA LOOP
92 04.03.97 INDEL AG

ISM-6.0 BIT-Commands
MBIT
Move BIT
18xx 00xx MBIT OFF,BASE,OFF2,BASE2
Explanation: Copy the Bit (OFF,BASE) to Bit (OFF2,BASE2).
Example: Copy the input-Bit 045 to the output 5:

MBIT 045,1B,5,0B

INDEL AG

04.03.97 93

BIT-Commands ISM-6.0
MINB
Move INvert Bit
19xx 00xx MINB OFF1,BASE1,OFF2,BASE2
Explanation: Copy the inverted Bit from (OFF1,BASEL) to Bit
(OFF2,BASE2).
Example: Copy the inverted Bit 1 of R22 to FLAG 5:

MINB 1,R22,5,FB

94

04.03.97

INDEL AG

ISM-6.0 BIT-Commands
FFSB
Find First Set Bit

1Bxx 00xx FFSB OFF,BASEN,DEST

Explanation: Test N Bits off Bit (OFF,BASE) on ‘ 1’ and give the number of the first set Bit to
DEST. If none of those Bits is set, set DEST = OFFFF.

ATTENTION: Even though N can be specified with 1..32, only up to 25 Bits are processed,
according to the Start-Bit. The CPU first gets the Bits to be processed by means
of a double-w ord transfer out of the memory into the internal register. This means
that the Bit-range can move w ithin 4 Bytes only. Therefore, Nis limited as follow s:
OFF = 00,08,10,18... N max = 32
OFF =01,09,11,19... N max =31
OFF =02,0A,12,1A... N max = 30
OFF =03,0B,13,1B... N max =29
OFF = 04,0C,14,1C... N max =28
OFF = 05,0D,15,1D... N max = 27
OFF = 06,0E,16,1E... N max = 26
OFF = 07,0F,17,1F... N max =25

Example 1: Search for the Bit-number of the first set Bit in REG 00 and give it to REG 22:
FFSB 0,R00,16,R22

Example 2: Search for the first set FLAG in the range FL-45..54 and w rite the Bit-number in

R10: If, for example, FL-50 is the first set flag, R10 gets 5!

FFSB 45,FB,10,R22

INDEL AG

04.03.97 95

BIT-Commands ISM-6.0
SBR_
Set Bit Range
1Dxx 00xx SBR OFF,BASE,N,SRC
SBRD OFF,BASEN,SRC:D
Explanation: Copy N Bits of SRC to Bit (OFF,BASE) and follow ing.
SBR N=1.16
SBRD N=1.32
ATTENTION: Even though N can be specified with 1..32, only up to 25 Bits are processed,
according to the Start-Bit. The CPU first gets the Bits to be processed by means
of a double-w ord transfer out of the memory into the internal register. This means
that the Bit-range can move w ithin 4 Bytes only. Therefore, Nis limited as follow s:
OFF =00,08,10,18... N max = 32
OFF=01,09,11,19... N max = 31
OFF =02,0A,12,1A... N max = 30
OFF =03,0B,13,1B... N max =29
OFF =04,0C,14,1C... N max = 28
OFF =05,0D,15,1D... N max =27
OFF = 06,0E,16,1E... N max = 26
OFF = 07,0F,17,1F... N max =25
Note: With this command, the correct order is DEST,N,SRC !
Example: Copy 24 Bits of REG 01,00 to the outputs off Output-Bit 045:

SBRD 045,0B,24,R00

96

04.03.97 INDEL AG

ISM-6.0 BIT-Commands
LBR_

Load Bit Range

1Fxx 00xx LBR OFF,BASE,N,DEST
LBRD OFF,BASE,N,DEST:D

Explanation: Copy N Bits off Bit (OFF,BASE) flush-right to DEST and fill in the residual Bits in
DEST with ‘0.
LBR N=1.16
LBRD N=1.32

ATTENTION: Even though N can be specified with 1..32, only up to 25 Bits are processed,
according to the Start-Bit. The CPU first gets the Bits to be processed by means
of a double-w ord transfer out of the memory into the internal register. This means
that the Bit-range can move w ithin 4 Bytes only. Therefore, Nis limited as follow s:
OFF =00,08,10,18... N max = 32
OFF=01,09,11,19... N max = 31
OFF =02,0A,12,1A... N max = 30
OFF =03,0B,13,1B... N max =29
OFF =04,0C,14,1C... N max = 28
OFF =05,0D,15,1D... N max =27
OFF = 06,0E,16,1E... N max = 26
OFF = 07,0F,17,1F... N max =25

Example: Load 30 inputs off input-Bit 045 to REG 01,00:

LBRD 045,1B,24,R00

INDEL AG

04.03.97 97

BIT-Commands

ISM-6.0

98

04.03.97

INDEL AG

ISM-6.0

MOV E-Commands

MOVE-Commands

INDEL AG

04.03.97

99

MOV E-Commands

ISM-6.0

MOV_

MOVe
20xx MOV SRC,DEST
30xx MOVD SRC:D,DEST:D
CAXX MOVF SRC.F,DEST:F
DAXx MOVL SRC.L,DEST.L
Explanation: Copy the contents of SRC to DEST.
ATTENTION: MOVF and MOVL go to TRAP-3 if the numbers are not floating-point numbers!
Example: Load ROO w ith the contents of the address ‘ ADRE :
MOV @ADRE,R00
100 04.03.97 INDEL AG

ISM-6.0 MOV E-Commands

XCH_
eXCHange
21xx XCH SRC,DEST
31xx XCHD SRC.D,DEST:D
Explanation: Exchange the contents of SRC and DEST.
Example: Exchange the contents of RO0 and R10:

XCH ROO,R10

INDEL AG 04.03.97 101

MOV E-Commands ISM-6.0

MZ___
Move Zero extended
22xX MZBW SRC:B,DEST:W
32xx MzBD SRC:B,DEST.D
34xx MZWD SRC:W,DEST:D
Explanation: Copy the contents of SRC to DEST and fill in the residual Bits (in DEST) w ith 0.
Example 1: Copy the first sign of the ASCII-buffer to R10 and delete the higher Byte in R10 as
w ell as the w hole R11:
MzBD ASC,R10
Example 2: MZWD 08000,R10 ; R11 =0000 , R10 = 8000

102 04.03.97 INDEL AG

ISM-6.0

MOV E-Commands

MX__

Move signum eXtended

23xx MXBW SRC:B,DEST:W
33xx MXBD SRC:B,DEST:D
35xx MXWD SRC:W,DEST:D
Explanation: Copy the contents of SRC to DEST and fill in the residual Bits (in DEST) w ith the
operational sign of SRC.
SRC = positive fillin 0
SRC = negative :fillin 1
Examples: R22 = 0087 !
MXBW R22,R22 ; R22 = FF87
MXBD R22,R22 ; R23,22 = FFFF,FF87
MXWD 1234,R55 ; R56,55 =0000,1234
INDEL AG 04.03.97 103

MOV E-Commands

ISM-6.0

MB__

Move Byte

27xX MLLB SRC.LB,DEST.LB
24xx MLHB SRC.LB,DEST:HB
25xX MHLB SRC:HB,DEST.LB
26xx MHHB SRC:HB,DEST:HB
Explanation: Copy one Byte from SRC to DEST. The other Byte in DEST is left unchanged if
DEST is in CRAM-range.
L =Lower Byte H=Higher Byte
Example 1: Limit the ASCII-Buffer to 10 signs:
MLHB 10,ASL
Example 2: Overw rite the second character in the ASCIl-buffer with ‘A':
MLHB “A” ASC
104 04.03.97 INDEL AG

ISM-6.0 MOV E-Commands
DUMP
Dump
O0AXX DUMP SRC,N,DEST
Explanation: Copy N 16-Bit w ords from SRC to DEST (copies ascending).
Example 1: Copy 01000..013FF to 02000..023FF:
DUMP @01000,0400,@02000
Example 2: Clear memory 0A000..0BFFF:

MOV 0,@0A000
DUMP @O0A000,01FFF,@0A001

INDEL AG

04.03.97 105

MOV E-Commands ISM-6.0

106 04.03.97 INDEL AG

ISM-6.0 LOGIC-Commands

LOGIC-Commands

INDEL AG 04.03.97 107

LOGIC-Commands ISM-6.0

AND_
AND
28xx AND SRC,DEST
28xx ANDD SRC:D,DEST:D
Explanation: Delete all Bits in DEST that are deleted in SRC.
SRC & DEST = DEST
0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1
Example: Mask ROO w ith OFFOO:

AND OFF00,R00

108 04.03.97 INDEL AG

ISM-6.0 LOGIC-Commands

OR_
OR
29xx OR SRC,DEST
39xx ORD SRC:D,DEST:D
Explanation: Set all Bits in DEST that are set in SRC.
SRC # DEST = DEST
0 # 0 = 0
0 # 1 = 1
1 # 0 = 1
1 # 1 = 1
Example: Set all Bits in ROO that are set in ADRE:

OR @ADRER00

INDEL AG 04.03.97 109

LOGIC-Commands ISM-6.0

XOR_
eXclusive OR
2AXX XOR SRC,DEST
3AXX XORD SRC:D,DEST:D
Explanation: Invert all Bits in DEST that are set in SRC.
SRC $ DEST = DEST
0 $ 0 = 0
0 $ 1 = 1
1 $ 0 = 1
1 $ 1 = 0
Example: Invert BIT 4 and 2 in R33:

XOR 014,R33

110 04.03.97 INDEL AG

ISM-6.0 LOGIC-Commands

COM_
COMplement
2Bxx COM SRC,DEST
3Bxx COMD SRC.D,DEST:D
Explanation: Copy the inverted SRC to DEST.
Example: Invert all Bits in R22:

COM R22,R22

INDEL AG 04.03.97 111

LOGIC-Commands ISM-6.0

LSH_
Logic SHift
2Dxx LSH N,DEST
3Dxx LSHD N,DEST:D
Explanation: Shift DEST N times left (N=pos) or right (N=neg) and fill in the new Bits with ‘0.
Shiftleft: N=1...31
Shift right: N=-1...-31
Example: Shift RO0 5 times left:
; ROO = 0001
LSH 5,R00 ; Shift left
; ROO = 0020

112 04.03.97 INDEL AG

ISM-6.0

LOGIC-Commands

ASH_

Arithmetic SHift

2Cxx ASH N,DEST
3Cxx ASHD N,DEST:D
Explanation: Shift DEST N times left (N=pos) and fill in the new Bits with O or shift DEST N times
right (N=neg) and extend w ith the operational sign of DEST.
Shiftleft: N=1...31
Shift right: N=-1...-31
Example: Divide ROO by four. Operational sign remains:
; ROO =O0FF00 (-256)
ASH -2,R00 ; Shift right, remain operational sign
;RO0O =O0OFFCO (-64)
INDEL AG 04.03.97 113

LOGIC-Commands

ISM-6.0

ROT_

ROTate

2Exx ROT N,DEST
3Bxx ROTD N,DEST:D
Explanation: Rotate DEST N times left (N=pos) or right (N=neg).
Rotate left: N=1..31
Rotate right: N=-1..-31
Example: Rotate R22 5 times left:
;R22= 1000
ROT 5,R22 ; Rotate left
;R22= 0002
114 04.03.97 INDEL AG

ISM-6.0 ARITHMETIC-Commands

ARITHMETIC-Commands

INDEL AG 04.03.97 115

ARITHMETIC-Commands ISM-6.0

ADD_
ADDition
40xx ADD SRC,DEST
50xx ADDD SRC:D,DEST:D
COxx ADDF SRC:F,DEST:F
DOxx ADDL SRC:L,DEST:L
Explanation: Add SRC and DEST to DEST.
Example 1: Add 1 to ROO:
ADD 1,R00 ; ROO = ROO+1
Example 2: Add Pi to R23,22:
ADDF 3.141592654,R22 ; R23,22 +PFi Floating Point

116 04.03.97 INDEL AG

ISM-6.0 ARITHMETIC-Commands

SUB_

SUBtraction
41xx SUB SRC,DEST
51xx SUBD SRC.D,DEST:D
C1xx SUBF SRC:F,DEST:F
D1xx SUBL SRC.L,DEST:L
Explanation: Subtract SRC from DEST to DEST.
Example: Subtract 1 from R23,22

SUBD 1,R22 ;R23,22 = R23,22-1

INDEL AG 04.03.97 117

ARITHMETIC-Commands ISM-6.0

MUL _

MULtiplication
42xx MUL SRC,DEST
52xx MULD SRC:.D,DEST:D
C2xx MULF SRC:F,DEST:F
D2xx MULL SRC.L,DEST.L
Explanation: Multiply SRC w ith DEST to DEST.
Example: Multiply R23,22 with 3.3:

MULF 3.3,R22 ; R23,22 =R23,22*3.3

118 04.03.97 INDEL AG

ISM-6.0 ARITHMETIC-Commands

DIV_
DNVision
43xx DV SRC,DEST
53xx DIVD SRC:D,DEST:D
C3xx DIVF SRC:F,DEST:F
D3xx DVL SRC.L,DEST:L
Explanation: Divide DEST by SRC to DEST.
+ 10 [/ + 3 = + 3
-10/+ 3= - 4* * Rounds differently than QUO!
+ 10 [/ -3 = - 4*
-10/-3 =+ 3
Example: Divide R25,24,23,22 with 3.3:
DVL 3.3,R22 » R25,24,23,22 = R25,24,23,22 | 3.3

INDEL AG 04.03.97 119

ARITHMETIC-Commands ISM-6.0

QUO_
QUOtient
48xx QUO SRC,DEST
58xx QUOD SRC:D,DEST:D
Explanation: Calculate the quotient of DEST/SRC to DEST.
+ 10QUO + 3 =+3
- 10QUO + 3 =- 3* * Rounds differently than DIV !
+ 10QUO - 3 =- 3*
- 10QUO - 3 =+3
Example: Calculate the quotient of R22 / 033:

QUO 033,R22

120 04.03.97 INDEL AG

ISM-6.0 ARITHMETIC-Commands
MOD _
MODulus
49xx MOD SRC,DEST
59xx MODD SRC:.D,DEST:D
Explanation: Calculate the rest of DEST/SRC to DEST.
+ 10MOD + 3 =+1
- 10MOD + 3 =+2* * Rounds differently than REM!
+ 10MOD - 3 =-2*%
- 1o0MOD - 3 =-1
Example: Calculate R22 MOD R0O0 to R22:

MOD R00,R22

INDEL AG

04.03.97 121

ARITHMETIC-Commands ISM-6.0

REM_

REMainder

4AXX REM SRC,DEST

5AXX REMD SRC:.D,DEST:D

Explanation: Calculate the rest of DEST/SRC to DEST.
+ 10REM + 3 = + 1
-10REM +3 =-1* * Rounds differently than MOD !
+ 10REM - 3= + 1=
-10REM -3 =-1

Example: Calculate the rest of the DIV R22 / 3 to R22:
REM 3,R22

122 04.03.97 INDEL AG

ISM-6.0 ARITHMETIC-Commands

SQR_
SQuare Root
C6xx SQRF SRC:F,DEST:F
D6xx SQRL SRC:L,DEST:L
Explanation: Calculate the square root of SRC to DEST.
Example: Calculate the square root of 2 to R23,22,21,20: (long floating)

SQRL 2.0,R20

INDEL AG 04.03.97 123

ARITHMETIC-Commands

ISM-6.0

ABS_

ABSolute

4BXx ABS SRC,DEST
5Bxx ABSD SRC:D,DEST:D
CB5xX ABSF SRC:F,DEST:F
D5xx ABSL SRC:.L,DEST:L
Explanation: Calculate the absolute value of SRC to DEST.
neg ® pos ; pos remains positive !
Example: Calculate the absolute value of RO0O to R22:
ABS R00,R22
124 04.03.97 INDEL AG

ISM-6.0 ARITHMETIC-Commands

NEG_
NEGate
ACxx NEG SRC,DEST
5Cxx NEGD SRC:.D,DEST:D
CAxx NEGF SRC:F,DEST:F
D4xx NEGL SRC.L,DEST:L
Explanation: Calculate the negative value of SRC to DEST.
neg ® pos ; pos ® neg
Example: Negate the value in R25,24,23,22:

NEGL R22,R22

INDEL AG 04.03.97 125

ARITHMETIC-Commands ISM-6.0

126 04.03.97 INDEL AG

ISM-6.0 CONVERT-Commands

CONVERT-Commands

INDEL AG 04.03.97 127

CONVERT-Commands

ISM-6.0

CExx
CFxx
DExx

DFxx

Explanation:

Example:

MOV__

Floating to Integer

MOVFW SRC.F,DEST:W
MOVFD SRC:.F,DEST:D
MOVLW SRC.L,DEST:W

MOVLD SRC.L,DEST:D

Change the floating point number in SRC to an integer number in DEST.

Convert the floating point number R25,24,23,22 in an integer number R45,44:

MOVLD R22,R44

128

04.03.97

INDEL AG

ISM-6.0 CONVERT-Commands

MOV__
Integer to Floating

CCxx MOVWF SRC:W,DEST:F

CDxx MOVDF SRC:D,DEST:F

DCxx MOVWL SRC:W,DEST:L

DDxx MOVDL SRC:D,DEST:L

Explanation: Change the integer number in SRC to a floating point number in DEST.
Example: Convert the integer number 123 in a floating point number to R25,24,23,22:

MOVWL 123,R22 ; R22:L =123.0

INDEL AG 04.03.97 129

CONVERT-Commands ISM-6.0

HDCV_
Hex Decimal ConVert
AEXx HDCV SRC,DEST
5Bxx HDCVD SRC:.D,DEST:D
Explanation: Change the HEX-number in SRC to a decimal number (BCD-number) in DEST.
Example: Change the HEX-value in R22 to a decimal value:

HDCV R22,R22

130 04.03.97 INDEL AG

ISM-6.0 CONVERT-Commands

DHCV_
Decimal Hex ConVert
4FXx DHCV SRC,DEST
5Fxx DHCVD SRC:.D,DEST:D
Explanation: Change the decimal number (BCD-number) in SRC to a HEX-number in DEST.
Example: Change the decimal-value in R22 to a HEX-value:

DHCV R22,R22

INDEL AG 04.03.97 131

CONVERT-Commands ISM-6.0

ADDR

ADDRess calculation

5Dxx ADDR SRC,DEST:D
Explanation: Calculate the address of SRC to DEST (Double-Word Address).
Examplel: Calculate the address of REG 00 to REG 00/R01:
ADDR RO00,R00
Example2: Calculate the address of the ASCI-BUFFER to R01,00:
ADDR ASC,R00
132 04.03.97 INDEL AG

ISM-6.0 Compare- Commands

Compare- Commands

INDEL AG 04.03.97 133

Compare- Commands ISM-6.0

CBR_

Compare and BRanch absolute

6_xx SAD CBR SRC:W,COND,DEST:W,SAD
7_xx SAD CBRD SRC:D,COND,DEST:D,SAD
Explanation: Compare SRC w ith DEST and jump to SAD if the condition is fulfilled.
The operational sign is not tested (08000>07FFF)
BEF COND Function
0 = BR IF EQUAL
1 <> >< BR IF NOT EQUAL
2 < BR IF LESS THAN
3 <==< BR IF LESS THAN OR EQUAL
4 > BR IF GREATER
5 >==> BR IF GREATER OR EQUAL
C &7 BRIFAND= 0 DEST unchanged
D &N BRIFAND><0 DEST unchanged
E +Z BRIFADD= 0 DEST=DEST+SRC !!
F +N BRIFADD><0 DEST=DEST+SRC !
Example 1: Jump to SADif R10,11 = R22,23:
CBRD R10,=,R22,SAD
Example 2: Pass through a LOOP 125 times:
MOV 125,R00 ; INIT LOOP-Counter
LOOP: : LOOP-Commands
CBR -1,+N,R00,LOOP ; LOOP-Counter
Example 3: Search the end of the text in the ASCII-Buffer:
ADDR ASC,RO ; Address of the ASCI-BUFFER
LOOP: CBR 000FF,&Z,[R0O],EQOTL ; Test Low er-Byte
CBR 0FF00,&N,[RO]+1,LOOP ; Test Higher-Byte, Address+1
EOTH: ; End of the text in the High-Byte -1[R4]
EOTL: ; End of the text in the Low -Byte O[R4]
134 04.03.97 INDEL AG

ISM-6.0 Compare- Commands

CBRS_

Compare and BRanch Signed

6_xx SAD CBRS SRC:W,COND,DEST:W,SAD
7_xx SAD CBRSD SRC:D,COND,DEST:D,SAD
Explanation: Compare SRC w ith DEST and jump to SAD if the condition is fulfilled.

The operational sign is tested (08000<07FFF!)

BEF COND Function

6 < BR IF LESS THAN

7 <=,=< BR IF LESS THAN OR EQUAL
8 > BR IF GREATER

9 >==> BR IF GREATER OR EQUAL

Note: The comparisons = and <> may also be entered by CBRS and CBRSD. How ever,
they are changed automatically in a normal CBR or CBRD.

Example 1: Jump to SAD if R22 is positive:

CBRS R22,>=,0,SAD ; Test SIGNED
Example 2: Jump to SAD if R22,23 is negative:

CBRSD R22,<,0,SAD ; Test SIGNED

INDEL AG 04.03.97 135

Compare- Commands ISM-6.0

CBR_

Compare and BRanch floating

A_xx SAD CBRF SRC:F,COND,DEST:F,SAD
B_xx SAD CBRL SRC.L,COND,DEST:L,SAD
Explanation: Compare SRC w ith DEST and jump to SAD if the condition is fulfilled.
BEF COND Function
A = BR IF EQUAL
B <S> >< BR IF NOT EQUAL
C < BR IF LESS THAN
D <=,=< BR IF LESS THAN OR EQUAL
E > BR IF GREATER
F >==> BR IF GREATER OR EQUAL
Example 1: Jump to SADif R22,23 >=123.456 E15:
CBRF R22,>=,123.456E15,SAD ; Floating-Point
Example 2: Jump to SAD if R10..13 < PHI:
CBRL R22,>=,3.141592654,SAD ; Long-Floating
136 04.03.97 INDEL AG

ISM-6.0 TIME-Commands

TIME-Commands

INDEL AG 04.03.97 137

TIME-Commands ISM-6.0
TIME
get/set TIME
B4x_ TIME ART,ADRE
Condition: - PCMASTER Firmw are Rev.1.56 or higher
- TRANS.EXE 1.7 or higher
- INI-file-entry in rubric [PCMaster] enable time = YES
Explanation: Set or read time, date, day of w eek or day number.
Code ART Transfer Example
0 ADAT ASC DATE “DDMMYY” 26.04.90
1 ATM ASC TIME “HHMM:SS” 11:51:33
2 ADOW ASC DAY OF WEEK “DW’ DO
3 ADNR ASCDAY NR. “D\R’ 116
B ATOT ASC TIME TOTAL “DD.MM.YY__HHMM.SS__DW__DNR’
4 BDAT BIN DATE 00YY' MVDD 00900426
5 BTIM BIN TIME HHMM SSZZ 11513300
*6 BDOW BIN LANGUAGE & DAY OF WEEK OLOD 0004
7 BDNR BIN DAY NR. OYYY’ YDNR 01990116
Language: The day of w eek can be show n in several languages:
L: 0=German, 1 = English, 2 = ltalian , 3 = French
If the systemis designed multiingual, LANGUAGE can serve as (battery-stored)
language-selection-Bit for the w hole system!
Day of w eek: D: 1 =Monday , 2 =Tuesday ... 7 = Sunday
Note: The length of the ASCI-buffer * ASL’ is not tested! The turn of the year and the
leap-year is, also after the year 2000, automatically and correctly processed.
Example: Alw ays show s the actual time. Since the time is show n in second-intervals only,
the system can be relieved essentially if a DELAY-command is inserted:
LOOP: TIME ATOT,ASC ; DATE, TIME, DOW , DNR
TOP DEV,POS,ASC ; DISPLAY ON SCREEN
DELAY 100 ; SYSTEM-RELIEF 1-SEC
BRA LOOP
138 04.03.97 INDEL AG

ISM-6 Contents

139 INDEL AG

PC-Interface-Commands ISM-6.0

PC-Interface-Commands

140 04.03.97 INDEL AG

ISM-6.0 PC-Interface-Commands

PCCOM

General: These commands serve the access on the PC' s serial interfaces, starting fromthe
PCMaster’ s macro. It w as paid attention, that the selection of a serial PC-Interface
(COMx) can happen quite compatible to the selection of a INDEL 2K-SIO.

Conditions: To select a PC-Interface from PCMaster,
tw o drivers of the PC must first be loaded in the correct order.

1. COMDRIVE.COM Rev. 2.03 or higher

Driver of the serial PC-interfaces.
2. PCMIRQ.EXE Rev. 1.00 or higher

Driver of the PC-Master interrupts.
The tasks w hich use the PCCOM-commands, must announce these w ith
“.INLCUDE PCCOM.INC' to the macro-assembler at the beginning. The module
PCCOM.OBJ must be linked to the very number in the operating system that is

defined in the PCCOM.INC or vice versa.

3 more parameters can be handed over to the driver PCMIRQ by means of

INDEL. INI:

[PCMaster]

IRQNumber= Number of the PCMaster-Interrupts
(adjustable by jumper)
Default : 11

[PCMIRQHandler]

COMinputBufferSize= Size of the input-buffer in Bytes
Default : 256

COMOutputBufferSize= Size of the output-buffer in Bytes
Default : 256

Attention: The overflow of the input- or output-buffer is not supervised; this means that it is

up to you to choose the adequate sizes according to the requests.

Device Number: The counting of the device numbers is started w ith 0, w hat means that the PC-
interface COML1 has the PCCOM-device number 0, COM2 the number 1 and so on.
(But at the moment, only tw o interfaces are supported.)

Baud Rate: The baud rate is specified as follow s:
7 4 3 0
BAUD: odd | PEn | 2SB | 8DB|| res BAUD-RATE

INDEL AG 04.03.97 141

PC-Interface-Commands ISM-6.0

BO..3 Baud-Rate BO..3 Baud-Rate
0 300 4 4800
1 600 5 9600
2 1200 6 19200
3 2400 7 38400
BIT MODE 0 1
7 PARITY EVEN ODD
6 PARITY DIS EN
5 STOP BITS 1 2
4 DATA BITS 7 8
3 reserved - -
Errors : Transmission errors of any case (for example parity error and so on) are not yet

identified; this means, that the corresponding task is, in case of such an error, not
yet set on abort automatically.

Control-Lines: The control-lines DTR,RTS,CTS,DSR can, by means of special commands, be
changed or questioned, respectively.

Information: - With all PCCOM-commands, the system requires the macro-
registers R70 and R71; this means, that the depth of stack
decrements by tw o places.

- Because the processing of the PCCOM-commands happens
completely asynchronous to the system, it is not allow ed to use
immediate values for certain parameters!!!

Example: COMBTOP 1, 01B, 1

|
‘ | Number of sign: immediate allow ed
Text: immediate NOT allow ed
Device: immediate allow ed

142 04.03.97 INDEL AG

ISM-6.0 PC-Interface-Commands

COMSETD
COM SET Device
COMSETD BAUD/DEV
BAUD/DEV: immediate allow ed

Explanation : Initialize the PC-SIO number. DEV w ith the baud-rate BAUD. Fromnow on, only the
initialized task has access to this SIO.

Information : The counting of the device-numbers begins w ith 0; this means, that the first PC-
SIO in the system has the device-number 0, the second the number 1 and so on.

Example : Initialize the PC-SIO COM2 w ith the baud-rate 9600,n,8,1.

COMSETD 01501

INDEL AG 04.03.97 143

PC-Interface-Commands ISM-6.0

COMRESD

COM RESet Device

COMRESD DEV

DEV: immediate allow ed

Explanation : Set the PC-SIO Nr. DEV free again .
Information : The counting of the device-numbers begins w ith 0; this means, that the first PC-
SIO in the system has the device-number 0, the second the number 1 and so on.
Example : Set the PC-SIO COML free of Johann’ s miseries.
COMRESD 0
144 04.03.97 INDEL AG

ISM-6.0 PC-Interface-Commands
COMTOP
COM Text OutPut
COMTOP DEV,TADR
DEV: immediate allow ed
TADR: immediate not allow ed
Explanation : Output of the text-string TADR to DEV.
Example: Write the text * By Zeus, w here are the women ?' to the PC-SIO COM2

COMTOP 1,@ZEUS

ZEUS: .TXT ‘By Zeus, where are the women?’

INDEL AG

04.03.97

145

PC-Interface-Commands

ISM-6.0

Explanation :

Example :

COMBTOP
COM Block Text OutPut
COMBTOP DEV,TBLK,N
DEV: immediate allow ed
TBLK: immediate not allow ed

N: immediate allow ed

Output of N signs of the text block TBLK to DEV.

Send this 5 byte control sequence to the ink jet printer :

COMBTOP 1,@TBLK,5

TBLK: .BYTE 01B,' T 00035’ Q

146

04.03.97

INDEL AG

ISM-6.0 PC-Interface-Commands

COMTIP
COM Text InPut
COMTIP DEV,TADR
DEV: immediate allow ed

Explanation : Read signs of DEV and w rite them to TADR until CR comes or until ASL - signs
w ere read. At the end of TIP, APO=0.

Example : Read the incoming signs of COML1 in the ASC-buffer :

COMTIP 0,ASC

INDEL AG 04.03.97 147

PC-Interface-Commands

ISM-6.0

COMJTIP

COM Jump Text InPut

COMJTIP DEV, TADR,SAD

DEV:

SAD:

immediate allow ed
immediate allow ed

Explanation : Read signs of DEV as with TIP, but jump on SAD as long as CRiis received or ASL
- signs w ere read. To show the systemthat it is about a new JTIP, you first have
to set R70=0; this is for technical reasons.

Example : Wait, until any sign is received :

MoV 0,ASC
MoV 0,R70 ; new JTIP
WAIT: CBR 0,<>,ASC,CONT ; anything written ?
JTIP 1,ASC,WAIT ; COM2 - inquiry
CONT:
148 04.03.97 INDEL AG

ISM-6.0

PC-Interface-Commands

COMSST
COM Set line STatus
COMSST DEV,STAT

DEV: immediate allow ed
STAT: immediate not allow ed

Explanation : Set the level of the control-lines RTS and DTR.
Bit0® DTR, Bit1® RTS
Example : Set DTR=1 and RTS=0 of COM2 :
MoV 1,RO
COMSST 1,R0
INDEL AG 04.03.97 149

PC-Interface-Commands

ISM-6.0

COMGST

COM Get line STatus

COMGST DEV,STAT

DEV: immediate allow ed

Explanation : Read the level of the control-lines CTS and DSR.
Bit 0® DSR, Bit1 ® CTS
Example : Read DSR and CTS of COML in register R10 :
COMSST 0,R10
150 04.03.97 INDEL AG

ISM-6.0 PC-Interface-Commands

INDEL AG 04.03.97 151

Info Master-Slave Protocol ISM-6.0

Info Master-Slave Protocol

152 04.03.97 INDEL AG

ISM-6.0 Info Master-Slave Protocol

16-Bit Protocol

Condition: To be able to use these functions, you need the master-card w ith the Softw are
Rev. 2.7 or higher, for the Info PC-Master the module info_com.32k and for the
rack the module ips_com.32k.

Description: The new functions F_GETBS8, F_PUTB8, F_GETB16, F PUTB16,F GETB32 and
F_PUTB32 w ere implemented to guarantee a defined data communication w ith the
different processor systems (big- and little-Endian) in the future. This functions
should be used only for debug purposes or for parameter definitions.

Format of Protocol:

Master Slave

15 1412 11
0

S | Type | Number

Address 0

Address 1

Data

Checksum

15 14 0
A Error Number
Data
Checksum

INDEL AG 04.03.97 153

Info Master-Slave Protocol ISM-6.0

Type:

Number:

Address 0:

Address 1:

Data:

Error Number:

Checksum:

Determines the Put, Get-Art.
0 = Normal Put Get.
1 = Special Put, Get.

With S = 1, the address is used as command or as parameter. You see a possible
application in connection w ith the SIMOV ERT-functions (only in the German
manual).

The follow ing values are permitted as data type:
0 = put 8-Bit integer block
1 = put 16-Bit integer block
2 = put 32-Bit integer block

4 = get 8-Bit integer block

5 = get 16-Bit integer block
6 = get 32-Bit integer block

The number of data to be received or transmitted of the type Byte, Word or
DWords. 0 corresponds to 212 = 4096.

Low -Word of the memory address or a w ord parameter depending on the
condition of S.

Hi-Word of the memory address or a w ord parameter depending on the condition
of S.

Byte, Word or DWord, depending on the defined data type.

Answ er status bit of the slave-card.
A =0 means: NACK, checksumw as wrong.
A =1 means: ACK, checksumw as right.

Number of the error. Zero means: no error.

The checksumis as long as a WORD. It is formed by the complement of the w ord
sum of the transmitted w ords. This means checksum + w ord sum = -1 (OFFFF).

154

04.03.97 INDEL AG

ISM-6.0

Info Master-Slave Protocol

Construction of the Command Block

Address of the card (word)
Number of data elements (word)

Source address
End address

Description:

Address of the
card:

Number of
data elements:

Source address:

(dw ord)
(dw ord)

This command block is used for the block-functions F_GETBS,
F_PUTB8,F_GETB16, F_PUTB16,F GETB32 and F_PUTB32, w hich transmit a
memory range from or to the card. Depending on the special block identifier, the
source and the end address get another meaning. You can see an example in the
SIMOVERT master drive-functions (only in the German manual).

Bit 14-12 type of card:

O=res

1 = Analog Inp (ADC, PT100, FAD..)
2=1I0 (16-Bit IO, Valve-10 ..)
3 =Posi,.DAC (4K-Pos, DAC)

6 = Special card (DENnd, Ultrasound..)

Bit 11-4 Address:
0-255, Choice of the card number, axis or outputs

15 14 12 11 4 3 0

Type Address

Bit 15 identifier for special block 1, otherwise 0
Bit 11-0 number of bytes / words / Dw ords to be written
Range of 0-4095. (0 =4096)

15 14 12 11 0

Spec. Type Number

Byte address of the buffer of the bytes / words or the Dw ords to be transmitted
(with F_PUTB, this address is in the memory, with F_GETB, it is on the card).

End address: Destination byte address to w hich the data is w ritten.
(with F_PUTB, this address is on the card, with F_GETB, it is in the memory)
INDEL AG 04.03.97 155

Info Master-Slave Protocol ISM-6.0

Special feature:

With the identifier of the special block, the addresses get another meaning. With
the function F_PUTB, this concerns the end address, with F_GETB, the source
address. The other meaning is defined as follow ed.

Bit 31-8 Is used as additional parameter value.

Bit 7-0 Determine the function service routine on the card
0 - 127 arereserved for INDEL functions
128- 255 are free for the user

31 87 0

Parameter Function

156

04.03.97 INDEL AG

ISM-6.0 Info Master-Slave Protocol

Error code in the APO Register

APO=1 : Line disconnection betw een the cards. (Link Dow n)

APO =2 : Card does not answ er. Probably not connected.

APO=3 : Check-sum error. The transmission w as not faultless.

APO =4 : Time-out error.

APO =5 : Error number of the answer was <> 0.

Description: The APO register is only fed w ith the error number, if the task jumps on the

ABORT -address; otherw ise, it remains unchanged.

INDEL AG 04.03.97 157

Info Master-Slave Protocol ISM-6.0

Info-Master:
InfoPC-Master:

Description:

Transfer
Parameter:

Return:

Special feature:

Example:

T_RSCOM:
T_FRCOM:

F_RESCOM

To reserve a channel

RCXP KombDes,MasterNr,'F RESCOM'
RCXP KombDes,0,'F RESCOM

Reserves a communication channel to the defined master. A communication
channel is needed to guarantee the data communication w ithout interruptions of
other tasks. The reserved channel must be set free again, because only a limited
number of descriptors is available. Only in case of the InfoPC-Master, the
communication descriptor can be used as pointer on the data structure of the
communication. This is, how, for example, the exact error number that w as sent
back by the card can be found out.

Info-Master: Master number, InfoPC-Master:

Communication descriptor

With the InfoPC-Master, the master number doesn’t make any difference. In case
of an error: jump on abort.

Reserve and set free again a communication channel to the master
card 2.

P_COMCH =R22 ; Communication descriptor (dw ord)
GGD @T_RSCOM,R20 ; get descriptor of F_ RESCOM
RCXP P_COMCH,2,R20 ; reserve a channel to master 2
GGD @T_FRCOM,R20 ; get descriptor of F_FRECOM
RCXP P_COMCH,0,R20 ; give channel free again, important !

TIXT 'F_RESCOM
IXT 'F_FRECOM

158

04.03.97 INDEL AG

ISM-6.0 Info Master-Slave Protocol

F_FRECOM

Set a channel free

RCXP KombDes,0,'F_FRECOM

Description: Set the reserved communication channel to the Master free again.
Transfer

Parameter: Communication deskriptor

Return: -

Special feature: In case of an error: jump on abort

Example: Set the previously reserved communication channel free.
Descriptor in P_COMCH.

P_COMCH =R22 ; Communication descriptor (dw ord)
GGD @T_FRCOM,R20 ; get descriptor of F_FRECOM
RCXP P_COMCH,0,R20 ; set the channel free

T_FRCOM: TIXT 'F_FRECOM

INDEL AG 04.03.97 159

Info Master-Slave Protocol ISM-6.0

Byte -Block:
Word -Block:
DWord-Block:

Description:

Transfer
parameter:

Return:

Special feature:

F_PUTBxx

Write 8/16/32-Bit block

RCXP KombDes,Befehlsblock,'F_PUTBS'
RCXP KombDes,Befehlsblock,'F_PUTB16'
RCXP KombDes,Befehlsblock,'F_PUTB32'

Writes n-bytes / -w ords / -Dw ords from the source address in the memory to the
end address in the chosen card. When w riting a special-block, the end address is
used as parameter. You can see a special-block-example in the chapter of the
SIMOVERT master drive-functions (only in the German manual).

Communication descriptor, command block

These functions should only be used for debug-purposes. An uncontrolled w riting
can lead to a 'crash'’ of the card and should therefore only be used with sufficient
know ledge.

In case of error: jump on abort. Reason to break off is in the APO register (1-5).

Example: Set the Hertz-counter of the Siemens controller, w ith the axis number 1, to 0. The
Word-counter value is on the address 07FE00040.
; The channel to the master w as already
; reserved.
; The descriptor is in P_COMCH.
CrdAdr =R24 ; Address of the card (word)
Anzword =R25 ; Number of w ords (word)
SRCADR =R26 ; Source address (dw ord)
ENDADR =R28 ; End address (dw ord)
MOV 03810,CrdAdr ; Siemens controller, axis 1
MOV 01,Anzw ord ; write 1 word
ADDR RO,SRCADR ; buffer on Reg RO
ASHD 1,SRCADR ; adapt to the byte address
MOVD 07FEO0040,ENDADR ; address of the Hertz-counter
MOV 0,RO ; set the counter to 0
GGD @T_PUTB16,R20 ; get descriptor of F_PUTB16
RCXP P_COMCH,CrdAdr,R20 ; write the block
160 04.03.97 INDEL AG

ISM-6.0 Info Master-Slave Protocol

T_PUTB16: TIXT 'F_PUTB16'

INDEL AG 04.03.97 161

Info Master-Slave Protocol ISM-6.0

Description:

Transfer
parameter:

Return:

Special feature:

F_GETBxx
Read 8/16/32-Bit-Block
RCXP KombDes,Befehlsblock,'F_GETB8'

RCXP KombDes,Befehlsblock,'F GETB16'
RCXP KombDes,Befehlsblock,'F_GETB32'

Reads n-bytes / -w ords / -Dw ords from the source address in the card to the end
address in the memory . When reading a special-block, the source address is
used as parameter.

Communication descriptor, command block

[Buffer]

In case of error: jump on abort.

Example: Read the Hertz-counter value of the Siemens controller w ith the axis number 3.
The w ord-counter value is on the address 07FE00040.
; The channel to the master w as already
; reserved.
; The descriptor is in P_COMCH.
CrdAdr =R24 ; Address of the card (w ord)
Anzword =R25 ; Number of words (word)
SRCADR =R26 ; Source address (dw ord)
ENDADR =R28 ; End address (dw ord)
MOV 03830,CrdAdr ; Siemens controller, axis 3
MOV 01,Anzw ord ; Read 1 word
ADDR RO,ENDADR ; Buffer on Reg RO
ASHD 1,ENDADR ; Adapt to the byte address
MOVD 07FE00040,SRCADR ; Address of the Hertz-counter
GGD @T_GETB16,R20 ; Get descriptor of F_GETB16
RCXP P_COMCH,CrdAdr,R20 ; Read counting result
T_GETB16: TIXT 'F_GETB16'
162 04.03.97 INDEL AG

ISM-6.0 INFO_SIO - Commands

INFO_SIO - Commands

INDEL AG 04.03.97 163

INFO_SIO - Commands ISM-6.0

General:

Conditions:

Attention:

DataFrame:

Errors:

INFO_SIO

2 INFO_SIO - cards are supported by the standard-firmw are w hat means 4 SIO-
channels. These channels are addressed by the device - numbers 0..3.

INFO-PCMaster Firmw are Rev. 2.88 or higher.

The INFO_SIO - commands w ere implemented by .NEWINST of macro assembler.
The commands are implemented in the module SIO_NSIO; this means that the
module-number of SIO_NSIO (see file INFO.IND) must be assigned to the equal
MOD_NSIO in the file SIO_NSIO.INC.

The Transmission Format is specified in the usual INDEL - design. The Baud rate is

an exception: it is freely selectable up to 115200 Baud, thus, also devices w ith
exotic Baud rates can be addressed (see command SIOSETD).

15 14 13 12 11 10 9 8 7 0
| odd | PEN | 2SB | 8DB | xon | RS | res | Device

Bit Mode 0 1

10 [RS422 driver EN EN w hen transmitting
11 | XON/XOFF DIS EN

12 | DATA BITS 7 8

13 | STOPBITS 1 2

14 | PARITY DIS EN

15 | PARITY EVEN ODD

Johann jumps on its abort-address in case of the follow ing errors (the error -
number stands in APO - register):

INFO_SIO Communication - Error

001 LinkDow n (no closed INFO-link available)

002 INFO_SIO - card does not answ er

003 Check sum- error (the INFO-link is bad, the communication to the
INFO_SIO - card is seriously disturbed -> check error-counter)

004 Timeout (w hen communicating w ith the INFO_SIO-card,

a timeout occured)

005 internal communication error (call INDEL)

164

04.03.97 INDEL AG

ISM-6.0

INFO_SIO - Commands

Debug Note:

Special Signs:

Buffer:

OUT:

INPUT :

DTR:

RTS:

INFO_SIO protocol - error
010 Put/Get w ithout having selected a protocol before
(should happen only in case of self-protocol-implementations)

020 Receive abort character (only with SIOTIP)

021 Framing error

022 Parity error

023 Overrun error

024 Input-buffer overflow

025 DSR w ith SIOSETD =0

026 Timeout w ith SIOTOP, SIOBTOP, SIOTIP or SIOBTIP

The INFO_SIO - commands w ere partly implemented w ith macro w hat means that
a single step in an INFO_SIO - command leads you and your Johann somew here
in the system’' s profundity. We therefore advise you, not to debug the INFO_SIO -
commands w ith single step, but to set a breakpoint immediately after the command
and w ork off the command w ith F9 (go).

A text-entry is closed, w hen either the desired number of signs (SIOBTIP) or the
desired end string (SIOTIP) has arrived. If, with SIOTIP, no end string w as
defined, this end string thus behaves compatible to TIP on the 2K-SIO; this means,
that the LF (OA) and the 00 - character are ignored and the input is completed, as
soon as a CR (0D) has arrived. If the abort-character 'ABC' is received with
SIOTIP, the input buffer is cleared and Johann jumps on abort.

The INFO_SIO has, per channel, 2KByte input- and 2KB output buffer. The
follow ing max. block length are allow ed :

SIOTOP 512 Bytes

SIOBTOP 512 Bytes

SIOTIP 255 Bytes (because ASL has the size of only one Byte)
SIOBTIP 512 Bytes

The output buffer alw ays receives data from SIOTOP or SIOBTOP, provided it is
not full, even w hen the output data channel is decelerated by CTS or XOFF. The
buffer can be deleted with SIOSETD only.

The input buffer is alw ays ready to receive, provided it is not full. TIP takes data
from the input buffer only. The buffer can be deleted by SIOSETD. It is also
deleted w ith FRAMING, PARITY and OVERRUN -Error.

The output DTRis used to decelerate the input device. Because the input buffer is

alw ays open, DTR (-15V) only decelerates if this buffer leaves free 256 signs at
least. If this value is fallen below, also DTR gets active again (+15V).

The RTS output alw ays gets active (+15V) if there is data in the output buffer.

INDEL AG

04.03.97 165

INFO_SIO - Commands ISM-6.0

CTS:

DSR:

DCD:

XON/XOFF:
XOFF
XON

Note:

Note:

Via the CTS input, the output data can be decelerated. As soon as it is inactive (-
15V), the output is stopped (the processing sign is still transmitted).
If it is not needed: CTS ->+5..15V.

If, with SIOSETD, the DSR input is inactive (-15V), Johann jumps on its ABORT
address. This is used to recognize if there is an output device connected and
ready to receive data (end of paper). After this, the DSR w orks as the CTS line.
If it is not needed: DSR -> +5..15V.

This input is, in the modem mode, used as data carrier detect. If the DCD is
inactive (-15V), the input channel is switched off and it isn't possible to receive
any wrong or undefined signs. If it is active (+15V), the input is switched through
normally.

If it is not needed: DCD -> +5..15V.

In case of XONJOFF-mode, there are the control lines processed, but also XON
(011) and XOFF (014). lf XON/XOFF is sw itched off, those signs are handled as
others are. If XON/XOFF is switched on, the user doesn't note anything; the
receiving XON/XOFF doesn't reach the INP buffer.

is sent if the INP buffer leaves free 256 signs at least.
If XOFF is received, the output is stopped immediately
(the processing sign is still transmitted).

is sent if XOFF w as sent before and the INP buffer has capacities again; even
though after Pow er-On w ith the first SIOSETD (only, if XON/XOFF w as chosen!).
If XONis received and there is still data in the OUT-buffer, the transmitting wiill be
continued.

The XON/XOFF - mode is not yet supported in the acutel INFO_SIO revision.
The control lines CTS,DSR,DCD are also processed in the 20mA, RS422 and

XON/XOFF-mode.
If they are not needed: all on +5..15V !

166

04.03.97 INDEL AG

ISM-6.0 INFO_SIO - Commands

SIOSETD

SIO SET Device
SIOSETD DEV, BAUD:D

Explanation : With the SIOSETD - command, the SIO-channel DEV is reserved for this Johann. In
the High-Byte of DEV, you can define the DataFrame (see Introduction). In the
Low -Byte, the channel number is specified (0..3).
With BAUD, you can select any baud rate (up to 115200 Baud); also exotics are
allow ed, as for example 1326 baud. Note, that the baud rate must be specified as

double w ord.

If the DSR input is inactive (-15V) w hen executing SIOSETD, Johann jumps on
abort (APO = 025).

With SIOSETD, the input and output buffers are deleted.

Example: Reserve the SIO - channel 0 on card 1 (->channel 2). Initialize the transfer-format
w ith 19200 Baud, E8,1.

SIOSETD 0C002,19200:D

INDEL AG 04.03.97 167

INFO_SIO - Commands ISM-6.0
SIORESD
SIO RESet Device
SIORESD DEV
Explanation : Set a SIO-channel, reserved with SIOSETD, free again.
Example : Set channel 2 free again
SIORESD 2
168 04.03.97 INDEL AG

ISM-6.0 INFO_SIO - Commands

SIOTOP

SIO Text OutPut
SIOTOP DEV,TADR,EADR,TIMOUT:D

Explanation : Output of text-string TADR (ended with 00 char) + EADR (ended w ith 00 char)
on DEV.
With EADR, any terminating string can be defined, for example CR,LF ...
SIOTOP w rites the character string in the output buffer and returns immediately.
How ever, if the buffer is full and is not processed any more (because, for
example, CTS or DSR are inactive -> it isn't possible to send), a max. w aiting

period in ms can be defined. TIMOUT = 0 means -> no time-out monitoring.

We recommend to specify a time-out period in any case for an unnecessary
blocking of the task can be prevented.

Note: max. length of the output string (TADR+EADR) = 512 signs

Note: The time-out period must be defined as a double w ord. The Time-out monitoring is
assisted only off INFO_SIO Rev. 1.10 and INFO-PCMaster Firmw are Rev. 2.91.

Example : Write the text 'Oh, du meine SIO' on channel 1 and end w ith CRLF. Note, that OAOD
is defined as double word for a 00 char is automatically generated.

SIOTOP 1,@TEXT,0A0D:D,10:D

TEXT: .TXT 'Oh, du meine SIO'

INDEL AG 04.03.97 169

INFO_SIO - Commands ISM-6.0

Explanation :

Note:

Note:

Example :

SIOBTOP
SIO Block Text OutPut
SIOBTOPDEV,TBLK,N, TIMOUT:D
Output of N signs out of the text - block TBLK on the channel DEV. With this
command, all signs from 00..FF can be given w ithout restrictions.
SIOBTOP w rites the character string in the output buffer and returns immediately.
How ever, if the buffer is full and is not processed any more (because, for
example, CTS or DSR are inactive -> it isn't possible to send), a max. w aiting

period in ms can be defined. TIMOUT = 0 means -> no time-out monitoring.

We recommend to specify a time-out period in any case for an unnecessary
blocking of the task can be prevented.

The number of signs Nis limited to max. N=512.

The time-out period must be defined as a double w ord. The Time-out monitoring is
assisted only off INFO_SIO Rev. 1.10 and INFO-PCMaster Firmw are Rev. 2.91.

Send this 5-Byte control sequence to the printer that is connected to channel 1.
TBLK: .BYTE 01B,'T,000,035,q'

SIOBTOP1,@TBLK,5,10:D

170

04.03.97 INDEL AG

ISM-6.0

INFO_SIO - Commands

Explanation :

Note:

Example :

SIOTIP
SIO Text InPut
SIOTIP DEV,TADR,EADR, TIMOUT:D
Read the signs from DEV to TADR, until the TIP-end-identification-
string is arrived or until TIMOUT ms are run dow n.
With EADR, any end-identification-string can be defined, for example CR,LF
Without end-string-specification, the command reacts as the TIP on the 2K-SIO
(OA and 00 char are ignored, 0D applies as end-identification)
The time-out period must be defined as a double w ord.
Read signs from channel 0 to the ASC-buffer until CRLF is arrived or 2 sec are
run dow n. Note, that 0OAOD is defined as double w ord for a 00 char is

automatically generated.

SIOTIP 0,ASC,0A0D:D,2000:D

INDEL AG

04.03.97 171

INFO_SIO - Commands ISM-6.0

SIOSTAT
SIO STATus

SIOSTATDEV,STRUCT

Explanation : Read the SIO-Channel status to STRUCT
STRUCT: offset0 Modem status register (MSR)
offsetl Actual number of signs in the input buffer
offset2 Actual number of signs in the output buffer
MSR MSR - Definition of 16550 UART.
Bit 4 CTS
Bit 5 DSR
Bit 7 DCD
Example : Read Status from channel 2. Write MSR to RO, input buffer to R1 and output buffer
to R2.
SIOSTAT 2,R0
172 04.03.97 INDEL AG

ISM-6.0 INFO_SIO - Commands
SIOBTIP

SIO Block Text InPut
SIOBTIP DEV,TBLK,N, TIMOUT:D

Explanation : Read signs from DEV, until either N signs w ere read or until TIMOUT ms are run
dow n. With this command, all signs from 00..FF can be read in w ithout any
restrictions.

Note: The time-out period must be defined as a double w ord

Example : Read 6 signs from channel 3 to R00..R02, w ait max. 500ms.

SIOBTIP 3,R0,6,500:D

INDEL AG

04.03.97 173

INFO_SIO - Commands ISM-6.0

174 04.03.97 INDEL AG

ISM-6.0 PSEUDO-Commands

PSEUDO-Commands

INDEL AG 04.03.97 175

PSEUDO-Commands

ISM-6.0

PSEUDO COMMANDS
TITLE: TITLE "**. PSEUDO COMMANDS -**"
.SUBTITLE "- Common -"
LISTING: .LINE 85 ; 85 Lines / Pages
.NOLIST ; Listing of f
.LIST ; Listing on
.BIECT ; New page
FILE .INCLUDE NEXTFIL ; Load additional file
ADDRESS: .LOC 01000 ; Start of program
ASSIGNMENTS: WTL: .EQU 012345678 ; With .EQU or =
WT2 = -WT1 ; Is filed in DW
Fwi1 = 123.456 ; Is filed in LONG
FW2 .EQU -123.456
Pl = 3.1415926536
RL1: .EQU 033(R77) ; R77 - relative
RL2 = 044(R22) ; R22 - relative
BUFFER = ASC
NAME = R11 ; NAME = R11
NUMBERS: Dz1: .EQU 999 ; Decimal
DZ3: .EQU 1E3 ; Exponent
HX1: .EQU 0ABCD ; Hex
FL1: .ECU 123.456E15 ; Floating point
FL2: .ECU -123.456E-15
FL3: .ECU 2.0 ; Decimal point = floating!
COORDINATES: YYXX: .EQU 1234|5678 ; DW out of tw o decimal numbers
; (|=ALT124)
CONSTANTS: LABEL: .BYTE 1,2'A 45
.WORD 01234,05678,START
.DOUBLE 012345678,087654321
.FLOAT 1.2,P,3.4E5
.LONG 6.7,Pl,-8.9E-10
BLOCKS: .BLKB Number of bytes ; Byte block
.BLKW Number of w ords ; Word block
.BLKD Number of double w ords ; Double w ord block
TEXT: TIXT "
<000009> Text with CRILF
<000009> and without CR/LF*
<000009> New -Line’
TIXT ‘ <09>special sign<OD><0A>'
176 04.03.97 INDEL AG

ISM-6.0 PSEUDO-Commands

INDEL AG 04.03.97 177

INDEX ISM-6.0

INDEX

178 19.06.97 INDEL AG

ISM-6.0 INDEX

[(RI=C) ISR 50; 51; 52 BRanch Alw ays.........cccocevviieinieciieeiien, 70
Branch to Sub-Routine...

COMBTORP......oociiiieiiriics e 143

ADAT oot COMGST .o 147
ADD_ovovvvvvo. COMINPUIBUFFEISIZE cvvverereee 138
ADbition COMITIP...coreeeeeseeee s 145
ADDR oo command BIOCKccevvvivieniciiene. 152
Address . COMOutputBufferSizeccocvveveiennene 138
ADDRess cglculatlpn 130 Compare and BRanch absolute 132
Address with Register-Offset.................. 45 Compare and BRanch floating 134
AAArESStADIE......oovvvesvres I Compare and BRanch Signed................. 133
Compare- Commands...........coceeererennne 131
COMplement
COMRESD........cciiiiiiieeiiee e
COMSETD.......ctviiiiiieieeeee e
COMSST ..o ittt
COMTIP.....oiiiiiiiee ettt 144
COMTOP.....coieei et 142
CONFIG.......19
CONSTANTS ..ottt 172
CONVEItcoveeeeviciciee e 126; 127
CONVERT-Commands..........cccovverreenreenne. 125
COORDINATES........ooetiiireie e 172
Copy.. 98; 103
CTS.. 162; 168
CXP e 79
D
DataFrame..........cccooiiviiciiiiiin,
Day of WeeK.......coccevininiiiiicns
DCD..ieeeeeeee e
Debugger ..o
Decimal Hex ConVert..
DELAY oo
Delete. ..o

INDEL AG 19.06.97

INDEX ISM-6.0

DHCV oo 129 include-file.........oovviriineiieeecee 12

DIV _ oottt 117 INDEL.INL.....coiieiieiiieciee et 19

DIVISION ...t 117 Indirect (Address with Register-Offset)...46

DOUBLE PRECISION..........cccoveeiiienieeiinenne 43 Indirect (Pointer indexed)..........cccccceeieeenne 48

DSR..oooeiieeeeee e 162; 168 INPUT-BaSE€....cccoieiiiiiiiiiiiiiiiiiiiee e 54

D 1 = USROS 161

Dualport Ram...........cccovveeviiiiiiieniieens 32; 33

DUMP........oiitiiieiiesie e siee e nee e enee e 103

E

EnableTime.......ccooevviiiiiee e 23

BQUAL ..ottt 12

EQUAL-FIlE. ..o e 27

ETOr e 160

Errors...... ..160

Example.......ocoooiiiiie e 11

eXCHANGE.......c.ceeeeeiiee e 99

eXclusive ORooiviiiieie e 108 JOhann ABOItcccoovvieeiiiceiee e 67

EXEQUIE ..ot 62 JOhann Klll.......ccooeviiniiiiiiicee e, 65

EXQ oot 62 Johann Self ABOIt.......ccccccveiiieniieeiieene 66

F Johann Self Klll..........ccccoeeveiieeeeiiiiee e, 64

E FRECOM JOKIciiieieei it 65

F_GI:—I'BXX JSAB ..o 66

F_PUTBXX covvvrtevesscnssscnsssesssenssines N 64

F_RESCOM JSM i 73

= = TS JST...... 75

] = T JUMP....ocii 12

Find First Set Bit Jump EXternalccccocvenneen. e

FLAG-Base Jump indirect Address-Table. .74

FLOATING POINT oo 43 Jump to SUbroutingccceevveriieenieenne 73

floating PoINt UNIt..........coveveveeeeeeeeieeeeeeeians 24 Jump to Subroutine indirect address-Table75

Floating to INtEgEr..........ccoevevvverereeerenan. 126 Jump-CommMANGS.......cooveiiieeieeenes 69

G L
[T 95
LINKDOW N ..o 160
KT .t 12
LISTING. v veeieeieiiie e 172
LISTING-File.......cccveeeerieeeesiecee e 27
LOAd......oiiiiiiiee e 98
Load Bit RaNge.........cccccvvviiieieieieneniee 95
load Registers and jump EXternal............. 78
Logic SHIft......ooiiiiiieie e, 110
LOGIC-Commands.. ..105

|

IB 54

IBIT et 90
D19

IMmediateccccveeeiiire e 42
INCLUDE.......coiiiiiiiiiieiiiiiticiee e eeeeeeiaans 172

LOOP-Counter.....

T T 110
M

180 19.06.97

INDEL AG

ISM-6.0 INDEX
MINB ..ottt 92 RB0..REF ...ttt
MOD_ ...t 119 R70..R7F .o
MODUIUS ..ot 119 RCXP ...ttt
MONILOr TASK...eevviiieiiiiiecicee e 24 REG ...ttt
MONItOTtASK.cevvieiiiieiiie i 19 REG(REG) ...ccvveeiiieiiiee it
MOV _ ittt 98 REG@@ADR ..ot
MOV __ et 126; 127 REG@ADR.......

MOVe......... 98 REG[REG]...

MOVE BIT ..ot 91 REGISTER.......ccoveieieienieniees

Move Byte.. ...102 Register indexed (w ith offset)...

Move INVErt Bit........ccccovveeiiieiiieeiieeiieee 92 Register indexed w ith Auto-Inc/Dec

Move signum eXtended.............c.cceveuns 101 Register indexed w ith Register Offset.....52
Move Zero extended...........ccceevvviinennene 100 REM
MOVE-Commands...........cccoevereeneeneenneenne 97

OFF(REG)....c.eiieeiiceeieeeeeeeee e
OFF@POI...

OFFREG] ...

OFFPOI.............

operational sign

OR_ et
OUT-BASE......ccoiiiieiieiieeee e
OULPUL .. e
OUTPUT-Base..........coccveveiiiiiiiiiii, 55
P

PC- Interface - Commandsc.c.c... 137
PC-Interface.......ccccoeveeiieeiiiieeiiee e 138
PCMIRQ ... 138
POL .o 47; 48
Program-Counter............ccovevvienieiinnnnenen, 37
PSEUDO- Commandscccceeveerveennnne. 171
Q

QUO e 118
QUOIENT. ... 118
R

ROO..R5Feiiiiiiieiecee e 36
ROO..R7F ..ot 49

SIOSETD.
SIOTIP.....

SQUAre ROOLcccvviieiiiiiie e 121
Stack-pointer.........cccovvveeiiieiiie e 37

SUB

INDEL AG

INDEX ISM-6.0
SYMBOI-file. ..o 12; 27
systemperformance...........cccccevveevirennen. 68
System-Registercccvoveiiiiiniieiiiee, 36
T
TASK-CONTROL-Commands..................... 61
Task-Number...........ccovvveevecrveeeeenns 63; 65; 67
................ 82
e ————— 83
Test and BRanch if bit =0...........cccceeeeenns 82
Test and BRanch if bit=1...........ccccocevenee 83 U
Testand HalTif bit =0 ...oocvveeiiiiiiiiiiees 84 UNAEr-program.........cceevveeseeeeneessveesnenens 71
Test and HalT if bit =0 and branch if Timeout W
-- 86 WOrking-registerccoooeveeveverererererennnn. 36
Testand HalTif bit=1................. 85; 86; 87 X
Test and HalT if bit = 1 and branch if Timeout XCH oo 99
-- 87 XOR _vvvvvvvvereessesesseeseesseseseensnnnnnnnnnnnnnnnneess 108
TEXT ettt 172 7
THTO. e 84 ZEUS.. oo 142
THTL. oo, 85; 86; 87

182 19.06.97

INDEL AG

ISM-6.0 INDEX

INDEL AG 19.06.97 183

ASCI-SET ISM-6.0

ASCII-SET

184 04.03.97 INDEL AG

ISM-6.0 ASCI-SET
Special Signs

Dez Hex Label Definition
0 00 NLL Nl |
1 01 SCH Sart of heading
2 02 STX Sart of text
3 03 ETX End of text
4 04 EOT End of transm ssion
5 05 ENQ BEnquiry
6 06 AKX Acknowl edge
7 07 BEL R ngs the bel |
8 08 BS Backspace
9 09 HT Hori zontal tab
10 0A LF Li ne feed
11 0B VF Vertical tab
12 oC FF Form f eed
13 0D R Carriage return
14 OE SO Shift out
15 OF S Shift in
16 10 DLE Data |ink escape
17 11 DCL Device control 1
18 12 D2 Devi ce control 2
19 13 DC3 Devi ce control 3
20 14 DA Devi ce control 4
21 15 NAK Not acknow edge
22 16 SYN Synchronus idl e
23 17 ETB End of trans bl ock
24 18 CAN Cancel
25 19 EM End of nedi um
26 1A SUB Substitute
27 1B ESC Escape
28 1C FS F | e separator
29 1D (€5 Q oup separ at or
30 1E RS Record separ at or
31 1F us Lhit separat or

INDEL AG

04.03.97

185

ASCI-SET ISM-6.0
FCV-Character
Dez 0 16 32 48 64 80 96 112|128|144 (160 (176|192 |208|224 (240
Hex |00 10 20 30 40 50 60 70 |80 |90 |AO|BO |CO DO |EO|FO

0 o 0 @ P p|[C|E]| &

1 1 I 1 A Q a q |0 |el|:

2 2 " 2 B R b r |é|&E]|O

3 3 # 3 C s ® s a 0 a

4 4 $ 4 D T d t|a]|o]|nd

5 5 % 5 E U e wulafo]|N

6 6 & 6 F VvV f v |&a|a]a»a

7 7 7 G W g w|g¢ u ©

8 8 (8 H X h x|e]|y |e¢

9 9)y 9 I Y i y|le|o

10 A 2 J z j z|e|U

11 B + ;K [k { |7 Y

12 C , < L\ I | [T | £ | %

13 D - = M] m } [i i

14 E > N A n ~ |A «

15 F / 2?2 O _ o _|A »
186 04.03.97 INDEL AG

ISM-6.0 ASCI-SET

INDEL AG 04.03.97 187

